milwaukeelinder

MC105R2

Specials are Our Standard

milwaukee Ulinder

...engineered solutions for hydraulic and pneumatic applications

A long established and recognized supplier of highly engineered cylinder solutions and a manufacturer of a standard range of steel and aluminum NFPA tie-rod cylinders for both hydraulic and pneumatic applications.

Milwaukee Cylinder, a leader and innovator in the hydraulic and pneumatic actuation field since 1956, is now ISO 9001:2008 certified.

Our broad product line offers a solution for virtually every possible cylinder application. We offer our customers years of experience in the design and manufacture of fluid power products with special operating and design requirements.

By working directly with our customers, Milwaukee Cylinder has developed a world-wide reputation for engineering expertise in the manufacture of specialty cylinders. Over the last 50 years, Milwaukee Cylinder has become known as the company where specials are our standard. At Milwaukee Cylinder, we operate with a spirit of innovation and creativity, dedicated to meeting the needs and challenges of todays most demanding applications. We take pride in being a producer of High-Quality Performance-Tested hydraulic and pneumatic products. Products that have been proven and tested by the worlds leading manufacturers in the harshest environments.

With our on-going commitment to research and development, as well as our worldwide sales and distribution network, we will continue to meet and exceed demanding customer requirements and provide world-class customer service. From initial design to after-sale support, we maintain the same high level of quality that our customers have come to recognize from Milwaukee Cylinder.

Table 3 Piston Rod End Styles (Series H, LH and A) See page 105 for Series MN

ROD MM	A	B ⁰⁰¹ 003	С	СС	*D	КК1	KK ₂₃₅	NA	AD	AE ^{+.001} 002	AF diameter	AC
5⁄8	3⁄4	11⁄8	3⁄8	5⁄8-18	1⁄2	1⁄2-20	7⁄16-20	19⁄32	5⁄8	1⁄4	3⁄8	11⁄8
1	11⁄8	1½	1⁄2	1-14	7⁄8	7⁄8-14	3⁄4-16	³¹ / ₃₂	^{15/} 16	3⁄8	11/16	11⁄2 (#1)
1 3⁄⁄8	15⁄8	2	5⁄8	1¾-12	11⁄8	11⁄4-12	1-14	1 ¹¹ / ₃₂	1 1⁄16	3⁄8	7⁄8	13⁄4
1 3⁄4	2	23⁄8	3⁄4	1¾-12	1½	1½-12	11⁄4-12	1 ⁴⁵ ⁄64	1 5⁄16	1⁄2	11⁄8	2
2	21⁄4	25⁄8	7⁄8	2-12	1 ¹¹ ⁄16	1¾-12	11⁄2-12	1 ⁶¹ ⁄64	1 ¹¹ ⁄16	5⁄8	1¾	25⁄8
2 ½	3	31⁄8	1	21⁄2-12	21⁄16	21⁄4-12	17⁄8-12	2 ²⁹ ⁄64	1 ¹⁵ ⁄16	3⁄4	13⁄4	31⁄4
3	31⁄2	3¾	1	3-12	25⁄/8	23⁄4-12	21⁄4-12	2 ¹⁵ ⁄16	27⁄16	7⁄8	21⁄4	35⁄8 (#2)
31⁄2	31⁄2	41⁄4	1	3½-12	3	31⁄4-12	21⁄2-12	37⁄16	211/16	1	21⁄2	43⁄8
4	4	43⁄4	1	4-12	33⁄8	3¾-12	3-12	3 ¹⁵ ⁄16	2 ¹¹ ⁄16	1	3	41⁄2
4 ½	41⁄2	51⁄4	1	41⁄2-12	**	41⁄4-12	31⁄4-12	4 ²⁷ ⁄64	3 ¾16	1½	31⁄2	51⁄4
5	5	53⁄4	1	5-12	**	4¾-12	31⁄2-12	4 ⁵⁹ ⁄64	3 ³ ⁄16	11⁄2	37⁄8	53⁄8
5½	5½	6¼	1	51⁄2-12	**	51⁄4-12	4-12	5 ²⁷ ⁄64	3 ¹⁵ ⁄16	17⁄8	43⁄8	6¼
7	7	8	1	7-12	**	6½-12	51⁄2-12	6 ⁵⁷ ⁄64	41⁄16	2	5¾	6½

* Distance across wrench flats.

****** (4) Spanner holes 33/64" x 1/2" deep.

Note: Other rod sizes available. Consult factory.

A Rod end style KK_2 is studded as standard for 5%" and 1" diameter rods.

Studded rod end style is available for all rod sizes. See page 105 for Series MN piston rod end styles.

CAUTION: When ordering replacement cylinders for competitive brands, our Style #1 rod ends may not be interchangeable with other manufacturers' Style #1. Our Style #2 should be used if this applies to your application.

METRIC Piston Rod End Styles (Series MH)

Bore	Rod						Rod End Styles					
Ø	ММ	В	V	С	*D	NA	KK,	А	KK ₂	А	$KK_{\mathfrak{s}}$	А
25	12 18	24 30	6	9	10 15	11 17	M10 X 1.25 M14 X 1.5	14 18	 M10 X 1.25	 14	M8 X 1 M12 X 1.25	14 18
32	14 22	26 34	12	13	12 18	13 21	M12 X 1.25 M16 X 1.5	16 22	 M12 X 1.25	 16	M10 X 1.25 M16 X 1.5	16 22
40	18 28	30 42	6 12	19 13	15 22	17 26	M14 X 1.5 M20 X 1.5	18 28	 M14 X 1.5	 18	M12 X 1.25 M20 X 1.5	18 28
50	22 28 36	34 42 50	6 9	19 16	18 22 30	21 16 34	M16 X 1.5 M20 X 1.5 M27 X 2	22 28 36	 M16 X 1.5 M16 X 1.5	 22 22	M16 X 1.5 M20 X 1.5 M27 X 2	22 28 36
63	28 36 45	42 50 60	6 9 13	26 23 19	22 30 39	26 34 43	M20 X 1.5 M27 X 2 M33 X 2	28 36 45	 M20 X 1.5 M20 X 1.5	28 28	M20 X 1.5 M27 X 2 M33 X 2	28 36 45
80	36 45 56	50 60 72	5 9	26 22	30 39 48	34 43 54	M27 X 2 M33 X 2 M42 X 2	36 45 56	 M27 X 2 M27 X 2	36 36	M27 X 2 M33 X 2 M42 X 2	36 45 56
100	45 56 70	60 72 88	7 10	28 25	39 48 62	43 54 68	M33 X 2 M42 X 2 M48 X 2	45 56 63	 M33 X 2 M33 X 2	45 45	M33 X 2 M42 X 2 M48 X 2	45 56 63
125	56 70 90	72 88 108	7 10	28 25	48 62 80	54 68 88	M42 X 2 M48 X 2 M64 X 3	56 63 85	 M42 X 2 M42 X 2	56 56	M42 X 2 M48 X 2 M64 X 3	56 63 85
160	70 90 110	88 108 133	7	25	62 80 **	68 88 108	M48 X 2 M64 X 3 M80 X 3	63 85 95	 M48 X 2 M48 X 2	63 63	M48 X 2 M64 X 3 M80 X 3	63 85 95
200	90 110 140	108 133 163	7	25	80 ** **	88 108 138	M64 X 3 M80 X 3 M100 X 3	85 95 112	 M64 X 3 M64 X 3	85 85	M64 X 3 M80 X 3 M100 X 3	85 95 112

* Distance across wrench flats.

** (4) Spanner holes 13mm x 13mm deep.

Note: Other rod sizes available. Consult factory.

CODE NO. 5 (KK₅)

Specials are Our Standard

CONTENTS	
SPECIALS / CUSTOM PRODUCTS	2-3
SERIES H HYDRAULIC CYLINDERS	4-35
SERIES MH ISO METRIC HYDRAULIC CYLINDERS	36-49
SERIES LH LOW PRESSURE HYDRAULIC CYLINDERS	50-71
SERIES A PNEUMATIC CYLINDERS	72-101
SERIES MN ALUMINUM CYLINDERS	102-134
HYDRAULIC PNEUMATIC DEVICES PRESSURE BOOSTERS	135-147
CYLINDER ACCESSORIES LINEAR ALIGNMENT COUPLER	148-153
INDUSTRIAL MANIPULATORS	154-159
POWER UNITS AND VALVES	160-176
DESIGN ENGINEERING GUIDE	177-193

Specials are Our Standard

Specials are Our Standard Specials are Our Standard

NEW PRODUCTS

METRIC HYDRAULIC CYLINDERS

Series "MH" ISO Metric Tie Rod Cylinders

- ISO standard 6020/2 160 bar series
- Working pressure up to 210 bar
- Temperature range 20° C to 150° C
- Cushions available at either or both ends
- Single and Double rod end design

See pages 36-49 for details!

POWER UNITS

- Gear (3000 psi) or Vane (2000 psi)
 Pump designs
- Vertical, JIC, Low Height or L-shaped reservoirs available
- Available in a wide range of standard and custom configurations

See pages 160-166 for details!

VALVES

- D03 and D05 spool type directional valves in multiple flow paths
- Working pressure up to 3000 psi (210 bar)
- Temperature range 20° C to 150° C

See pages 167-176 for details!

CUSTOM PRODUCTS

WHEN IT COMES TO SPECIAL CYLINDERS, *Milwaukee Cylinder* is not limited to tie rod constructed cylinders. This cylinder, which incorporated a number of special features, was designed for use on farm equipment. It features a threaded rod bushing for easy removal of the rod and piston seals, a modified NFPA mount MF1 to suit the design requirement of the customer, welded construction and welded half coupling ports were required so that this cylinder would be interchangeable with equipment already in the field.

WE ARE PROUD OF OUR ROLE as a quality supplier of cylinders to many different areas of industry. This cylinder was designed for a foundry application that required a special mounting because of clearance problems with existing equipment. *Milwaukee Cylinder* satisfied the customer's requirements with round end caps to provide the required clearance, multiple tie rods for added strength, and a special mounting to the customer's specifications.

IF STANDARD CYLINDERS WON'T DO THE JOB, we're specialists in engineering cylinders that will perform the functions that you require. This special pumping unit used on marine vessels was designed to separate the shipboard and mast hydraulic fluid systems. Cylinders used on a marine vessel to raise and lower the mast are subject to salt water contamination. To prevent contamination of the shipboard system, an independent hydraulic system is required for the mast. This cylinder acts as a pump operated off of the shipboard system, to provide hydraulic pressure for the mast system on the marine vessel.

SYSTEM SOLUTIONS

Milwaukee Cylinder wants to solve your problem!

We provide many complete solutions to both our OEM customers and end users.

In addition to custom cylinders we often provide plumbing, fittings, valves, mounting hardware, and other accessories to allow a quicker and easier solution.

Ask us to help!

Series H

Milwaukee Cylinder Series H Hydraulic Cylinders are built to perform on the toughest applications. Series H is a complete line of NFPA standard hydraulic tie rod cylinders, with maximum operating pressures up to 3000 psi on all standard bore sizes. If your application requires higher operating pressures, consult our engineers. Incorporating a variety of *Milwaukee Cylinder* exclusive advanced features proven through the years, these cylinders will provide a long, maintenance-free service life.

		Page
	TABLE 3 - Piston Rod End Styles	Inside Cover page ii
General	Standard Specifications and Features	6
	Performance Tested Design Features	7
	Tie Rod Mount	8-11
	Flange Mount	12-13
Mounting Specifications	Side Mount and Lug Mount	14-15
	Pin Mount and Trunnion Mount	16-19
	Solid End Cap Mount Double Rod End Cylinders Key Mount	20-25 26 27
	Design Options	28-29
Additional	Stop Tubes / Cylinder Sizing	30-31
Information	Ordering Information / Replacement Parts	32-33
	Installation / Trouble Shooting / Maintenance	34-35
Accessories	Clevis / Brackets / Pins / Rod Eyes Dimensional Data	Inside Back Cover

Daga

Standard Specifications and Features

STANDARD SPECIFICATIONS

 Standard construction – square head – tie-rod design

Series H

- Nominal pressure 3000 psi (See info box below for pressures higher than 3000 psi)
- Standard fluid-hydraulic oil
- Standard temperature -20° F to +200° F
- Standard bore sizes 1½" To 18"
- Standard piston rod diameters 5%" thru 7"
- Standard mounting styles– 18 standard styles and custom designs to suit your needs
- Strokes available in any practical stroke length
- Cushions available at either end or both ends of stroke
- Standard 7 rod end styles and specials designed to order
- Rod end style KK₂ is studded as standard for 5%" and 1" diameter rods. Studded rod end style is available for all rod sizes

If your hydraulic operating pressure exceeds

3000 psi, send

your application data for engineering evaluation and design recommendations.

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

STANDARD FEATURES

1. Removable Retainer Plate

The retainer plate and rod bushing are externally removable without disassembling the cylinder on most standard models. Four capscrews securely hold and lock the retainer plate in place.

2. Rod Bushing and Seals

A combination of spring loaded multiple lip vee rings with a supporting bronze bushing is standard in *Milwaukee Cylinder* Series H Cylinders.

3. Ports

Large NPTF cylinder ports are standard and can be located to customer requirements. SAE ports optional.

4. Piston Rod

The piston rod is of high strength steel, hardened and plated to resist scoring and corrosion, assuring maximum life.

5. Piston

The piston is of fine grained alloy iron, incorporating a combination of u-cup seals and cast iron rings, ensuring nonleak Hi-Lo pressure performance. The piston is pilot fitted and threaded to the rod.

6. Cylinder Barrel and Seals

The barrel is of steel tubing, honed to a fine finish to assure superior sealing, minimum friction and maximum seal life. It is step cut on the O.D. of both ends for an O-Ring and molded back-up washer. *Milwaukee Cylinder's* unique non-extrusion barrel seal design provides a positive leak tight seal.

7. End Caps

End caps and mountings are of high quality steel, precision machined for accurate mounting.

8. Tie-Rods and Nuts

The tie-rods are constructed from a high quality medium carbon steel. On most sizes the threads are rolled for rigid engagement of the self-locking nuts.

9. Cushions

Cushions are machined to close tolerance to provide positive, smooth deceleration at the end of stroke. On all bore sizes, we provide the longest cushion possible based on the rod size and blind end caps. Longer cushions are available; for further information, consult factory.

10. Cushion Needle Adjustment and Ball Check

The cushion needle adjustment valve and cushion-check ball retainer screw are specifically designed to provide full cushion adjustment.

Performance Tested Design Features

Simple Maintenance...

Optional piston design with four cast iron rings

Simple maintenance is reality with a *Milwaukee Cylinder*. The rod bushing or rod seals can be inspected or serviced by merely removing the cap screws and retainer plate on most models. Standard available shop tools can be used to remove the rod bushing and seals without disturbing the torque on the tie-rods, assuring performance quality with maintenance ease.

COMBINATION ROD SEAL DESIGN...

The Series H cylinder combines spring loaded multiple lip vee rings with a supporting bronze bearing ring bushing and a double lip wiper as a secondary seal. This proven rod seal design combination is effective at both high and low pressures. It affords maximum sealing and an extra long bearing support.

As an optional design, a onepiece rod bushing with a double lip u-cup rod seal and a double lip wiper is available. Metallic rod scrapers may be supplied on request, in place of the double lip wiper with either rod bushing design.

COMBINATION SEALING

The Series H Cylinder combines two bi-directional sealing cast iron piston rings, with u-cup seals with back-up rings and a fine grained alloy iron piston. This proven piston seal design is effective at both high and low pressures. The design gives

the wear and shock absorbing

quantities of cast iron and the

near zero leakage of the u-cup

As an optional design, a piston

using four low friction cast iron

rings is available.

ROD

seals.

Series

Series MH

Series

도

Series

Þ

ries

Design Guide

Cushions...

The cushion is of a high-grade alloy, precision machined and specially tapered to provide smooth deceleration of the piston at the end of stroke.

A standard manufacturing process at *Milwaukee Cylinder* is to assemble the piston, cushion, and the piston rod; placing the assembly between centers and checking the critical diameters for concentricity.

Piston Rod...

The piston rod is hardened, plated high strength steel, machined and processed to resist scoring and corrosion, assuring maximum life. *Milwaukee Cylinder* offers seven rod end styles as standard. **The style #2 rod end with two wrench flats is furnished as standard** unless otherwise specified. Special rod ends and extra wrench flats are also available. They must be specified at the time of order, giving the dimensional requirements and the location of additional wrench flats.

www.milwaukeecylinder.com

milwaukee

7

Series H, Tie Rod Mount

milwaukee

For Package and Mounting Dimension see Tables 1H and 2H.

TIE-ROD MOUNTED CYLINERS

Tie-rod mounts are suited for many applications and are similar to flange mounts, but tie-rod mounts are not as rigid as the flange type of mounting. The best use of tie rods extended on the blind end is in a thrust load application. When using tie rods extended on the rod end, the best application is a tension load. When long strokes are required, the free end should be supported to prevent misalignment, sagging or possible binding of the cylinder.

TIE RODS EXTENDED BOTH ENDS

MODEL H10 NFPA STYLE MX1

MODEL H11

NFPA STYLE MX0

NO TIE ROD EXTENSION

TIE RODS EXTENDED ROD END

TIE RODS EXTENDED BLIND END

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	۷	w	Y	ZB	ZT
	5⁄8	H00151	11⁄8	5	21/8	1⁄4	5⁄8	2	61⁄8	7
1 ½	1	H00152	11/2			1/2	1	23⁄8	61⁄2	73⁄8
•	1	H01510	1½	51⁄4	21/8	1⁄4	3⁄4	23⁄8	65⁄8	7 ¹³ ⁄16
2	13⁄8	H01511	2	074	270	3⁄8	1	25⁄8	61/8	8½16
	1	H01520	1½			1⁄4	3⁄4	23⁄8	63⁄4	7 ¹⁵ /16
2 ½	13⁄8	H01521	2	53/8	3	3⁄8	1	25%	7	8 ³ ⁄16
	13⁄4	H01522	23⁄8			1/2	11⁄4	21/8	71⁄4	87/16
	13⁄8	H01530	2			1⁄4	7⁄8	223/32	71⁄8	97/16
3 ¼	13⁄4	H01531	23⁄8	6¼	319/32	3⁄8	11/8	2 ³¹ /32	81⁄8	9 ¹¹ /16
	2	H01532	25⁄8			3⁄8	11⁄4	33/32	81⁄4	9 ¹³ /16
	13⁄4	H01540	23⁄8			1⁄4	1	2 ¹⁵ /16	83/8	9 ¹⁵ /16
4	2	H01541	25⁄8	65⁄8	31⁄8	1⁄4	11/8	31⁄16	81⁄2	101/10
	21/2	H01542	31⁄8			3⁄8	13⁄8	35⁄16	83⁄4	105/10
	2	H01550	25⁄8	71⁄8	43⁄8	1⁄4	11/8	31⁄16	91⁄4	117/1
5	21⁄2	H01551	31⁄8			3⁄8	13⁄8	35⁄16	91⁄2	11 ¹ / ₁
5	3	H01552	3¾			3⁄8	13⁄8	35⁄16	91⁄2	11 ¹ / ₁
	31⁄2	H01553	41⁄4			3⁄8	13⁄8	35⁄16	91⁄2	11 ¹ ¹ /1
	21/2	H01560	31⁄8							13¼
6	3	H01561	3¾	83/8	5	1⁄4	11⁄4	37⁄16	10¾	
0	31⁄2	H01562	41⁄4							
	4	H01563	43⁄4							
	3	H01570	3¾							
	31⁄2	H01571	41⁄4	91⁄2	5½	1/4	11/4	3¾	12	147⁄8
7	4	H01572	43⁄4	072	072	/4	174	074	12	14/8
	41⁄2	H01573	51⁄4							
	5	H01574	5¾							
	31⁄2	H01580	4¼							
	4	H01581	43⁄4	10½	6¼	1⁄4	11/4	37⁄8	13¼	16¼
8	41⁄2	H01582	51⁄4	10/2	074	74	1/4	078	1074	10/4
	5	H01583	5¾							
	51⁄2	H01584	6¼							
	41⁄2	H15100	51⁄4			1⁄4	11⁄4	43⁄4	16 ¹¹ /16	211/1
10	5	H15101	5¾	13 ¹³ ⁄16	81⁄2	1⁄2	1½	5	16 ¹⁵ ⁄16	215⁄1
	51⁄2	H15102	6¼			1/2	11/2	5	16 ¹⁵ /16	215/1
12	51⁄2	H15120	6¼	1.07/	07/			F1 /	109/	0.4117
12	7	H15121	8	167/16	9%	1⁄4	11⁄4	51⁄2	19%16	2411/1

HOW TO ORDER

For ordering information refer to Page 32.

Series H

Series MH

Series LH

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Power Units/Valves

Design Guide

NOTES:

 For double rod end cylinders, add prefix letter D to cylinder code. Example: DH00151. (Refer to page 26.)

MilCad Configu

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

For bore diameter sizes 14" to 18" see next page.

TABLE 2H

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	AA	BB	DD	E	EE NPT	EE SAE	F	G	J	K
1 ½	2.3	13⁄8	³⁄8-24	21⁄2	1⁄2	#10	3⁄8	1¾	1½	1⁄2
2	2.9	1 ¹³ ⁄16	1⁄2-20	3	1⁄2	#10	5⁄8	13⁄4	11/2	5⁄8
2 ½	3.6	1 ¹³ ⁄16	1⁄2-20	31⁄2	1⁄2	#10	5⁄8	13⁄4	11/2	5⁄8
31⁄4	4.6	25/16	⁵⁄8 -18	41⁄2	3⁄4	#12	3⁄4	2	13⁄4	3⁄4
4	5.4	25/16	⁵⁄s-18	5	3⁄4	#12	7⁄8	2	13⁄4	3⁄4
5	7.0	33⁄16	7⁄8-14	61⁄2	3⁄4	#12	7⁄8	2	13⁄4	1
6	8.1	35⁄8	1-14	71⁄2	1	#16	1	21⁄4	21⁄4	11⁄8
7	9.3	41⁄8	11⁄8-12	81⁄2	11⁄4	#20	1	23⁄4	23⁄4	11⁄4
8	10.6	41⁄2	1¼-12	91⁄2	11⁄2	#24	1	3	3	11/2
10	13.62	6	1¾-12	125⁄8	2	#24	1 ¹¹ ⁄16	311/16	311/16	15⁄8
12	16.25	7	2-12	141/8	21⁄2	#32	1 ¹⁵ ⁄16	47⁄16	47⁄16	11 %

www.milwaukeecylinder.com

Series H, Tie Rod Mount

milwaukee

For Package and Mounting Dimension see Tables 1H and 2H.

TIE ROD MOUNTED CYLINDERS

Tie rod mounts are suited for many applications and are similar to flange mounts, but tie-rod mounts are not as rigid as the flange type of mounting. The best use of tie rods extended on the blind end is in a thrust load application. When using tie rod extended on the rod end, the best application is a tension load. When long strokes are required, the free end should be supported to prevent misalignment, sagging or possible binding of the cylinder.

TIE RODS EXTENDED BOTH ENDS

MODEL HM10

TIE RODS EXTENDED ROD END

MODEL HM12

MODEL HM13

TIE RODS EXTENDED BLIND END

Series H

TABLE 1H

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	WF	Y	RD
	7	HM15140	8			1⁄4	31⁄2	6	10½
14	8	HM15141	9	15%	15% 10%		4	6½	11½
	10	HM15142	-			-	6	81⁄2	14½
	8	HM15160	9			1⁄4	4	73⁄8	11½
16	9	HM15161	-	18%	111/8	-	55⁄8	9	131/8
	10	HM15162	-			-	6	93⁄8	14½
10	9	HM15180	-	22	13¾	-	55⁄8	9¾	131/8
18	10	HM15181	-		1074	-	6	101/8	14½

HOW TO ORDER

For ordering information refer to Page 32.

NOTES:

• For double rod end cylinders, add prefix letter D to cylinder code. Example: DHM15140. (Refer to page 26.)

TABLE 2H

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	AA	BB	DD	E	EE SAE	G	J	K
14	17.88	41⁄2	11⁄4-12	17¾	#24	41⁄8	41⁄8	1½
16	20.25	5	1%-12	201⁄4	#24	51/8	51/8	15⁄8
18	22.63	5½	1½-12	221/4	#24	61/8	61/8	11⁄/8

MilCad Cylinder

Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

PISTON ROD END STYLES

NA-+

ROD END STYLE CODE NO. 2

А

NA

WF

-V-F-

MM

MN

STYLE KK2

Ŕ

KK,

STYLE KK5

KK₅

(4) Spanner holes 33/64" x 1/2" deep

(4) Spanner holes 33/64" x 1/2" deep

Series H

Series

МH

Series LH

Series A

Series MN

Cyl Accessories

LARGE BORE CYLINDERS

NOTE: Large bore Series H cylinders (14", 16" and 18") must use Table 3H for accurate piston rod end dimensions.

TABLE 3H - Piston Rod Ends

Bore Ø	Rod MM	Thread KK	Α	B +.000 005	F	NA	V	WF
	7	51⁄2-12	7	8	1 ¹⁵ ⁄16	61/8	1⁄4	31⁄2
14	8	5¾-12	8	9	1 ¹⁵ ⁄16	71/8	1⁄4	4
	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6
	8	5¾-12	8	9	1 ¹⁵ ⁄16	71/8	1⁄4	4
16	9	6½-12	9	-	33⁄8	87⁄8	-	55⁄8
	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6
18	9	6½-12	9	-	33⁄8	81/8	-	55/8
	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6

milwaukee

-lv WF ROD END STYLE CODE NO. 5

Series H, Flange Mount

milwaukee

For Package and Mounting **Dimension see** Tables 1H and 2H.

Series H

FLANGE MOUNTED CYLINDERS

The flange mount is one of the strongest, most rigid methods of mounting. With this type of mount there is little allowance for misalignment, though when long strokes are required, the free end opposite the mounting should be supported to prevent sagging and possible binding of the cylinder. The best use of a blind end flange is in a thrust load application (rod in compression).

Rod end flange mounts are best used in tension applications. If an application exceeds the rectangular flange rating, requiring an extra heavy flange, a solid flange style end cap mount is available for all bore sizes (refer to page 22). When a less rigid mount can be used and the cylinder can be attached to a panel or bulkhead, an extended tie-rod mounting could be considered.

ROD SQUARE FLANGE MOUNTING

Shown with circular retainer. Retainer is square <31/4" bore.

BLIND SQUARE FLANGE MOUNTING

MODEL H31 NFPA STYLE MF1

ROD RECTANGULAR FLANGE MOUNTING

BLIND RECTANGULAR FLANGE MOUNTING

Ė2 TF If PULL application,

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	W	WF	Y	ZB	ZF
	5⁄8	H00151	11⁄8	5	21/8	1⁄4	5⁄8		2	61⁄8	6
11⁄2	1*	H00152	1½			1/2	1	-	23⁄8	6½	63%
2	1	H01510	1½	51⁄4	21/8	1⁄4	3⁄4	_	23⁄8	65%8	65⁄8
2	13⁄8*	H01511	2	0/4	270	3⁄8	1		25⁄8	61/8	61/8
	1	H01520	11/2			1⁄4	3⁄4		23⁄8	6¾	6¾
2 ½	13⁄8	H01521	2	53/8	3	3⁄8	1	-	25⁄8	7	7
	1 ¾*	H01522	23⁄8			1⁄2	11⁄4		21/8	71⁄4	71⁄4
	13⁄8	H01530	2			1⁄4	7⁄8	15⁄8	223/32	71⁄8	71⁄8
3 ¼	13⁄4	H01531	23⁄8	6¼	319/32	3⁄8	11⁄8	11⁄8	231/32	81⁄8	81⁄8
	2	H01532	25⁄8			3⁄8	11⁄4	2	33⁄32	81⁄4	81⁄4
	13⁄4	H01540	23⁄8			1⁄4	1	17⁄8	215/16	83⁄8	81⁄2
4	2	H01541	25⁄8	65⁄8	31⁄8	1⁄4	11⁄8	2	31⁄16	81⁄2	85⁄8
	21⁄2	H01542	31⁄8			3⁄8	13⁄8	21⁄4	35⁄16	8¾	81/8
	2	H01550	25⁄8			1⁄4	11⁄8	2	31⁄16	91⁄4	91⁄8
5	21/2	H01551	31⁄8	71⁄8	43⁄8	3⁄8	13⁄8	21⁄4	35⁄16	91⁄2	93⁄8
0	3	H01552	3¾			3⁄8	13⁄8	21⁄4	35⁄16	91⁄2	93⁄8
	31⁄2	H01553	41⁄4			3⁄8	13⁄8	21⁄4	35⁄16	91⁄2	93⁄8
	21⁄2	H01560	31⁄8		5						105⁄8
6	3	H01561	3¾	83/8		1⁄4	11⁄4	21⁄4	37/16	10¾	
•	31⁄2	H01562	41⁄4								
	4	H01563	43⁄4								
	3	H01570	3¾								
	31⁄2	H01571	41⁄4								
7	4	H01572	43⁄4	91⁄2	51⁄2	1⁄4	11⁄4	21⁄4	3¾	12	11¾
	41⁄2	H01573	51⁄4								
	5	H01574	53⁄4								
	31⁄2	H01580	41⁄4								
	4	H01581	43⁄4								
8	41⁄2	H01582	51⁄4	10½	6¼	1⁄4	11⁄4	21⁄4	31⁄8	13¼	12¾
	5	H01583	53⁄4								
	51⁄2	H01584	6¼								
	41⁄2	H15100	51⁄4			1⁄4	11⁄4		43⁄4	16 ¹¹ /16	16¾
10	5	H15101	53⁄4	13 ¹³ ⁄16	81⁄2	1⁄2	1½	-	5	16 ¹⁵ ⁄16	17
	5½	H15102	6¼			1/2	1½		5	16 ¹⁵ ⁄16	17
12	51⁄2	H15120	6¼	167/16	91/8	1⁄4	11⁄4		E1/	109/	105/
12	7	H15121	8	10716	3.18	'/4	1 74	-	51⁄2	19%16	195⁄8

For bore diameter sizes 14" to 18" see pages 24 and 25 (solid end cap mount).

TABLE 2H

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EE NPT	EE SAE	F	FB	G	J	K	R	TF	UF
1 ½	21/2	1⁄2	#10	3⁄8	^{7/} 16	13⁄4	1½	1⁄2	1.63	37⁄16	41⁄4
2	3	1⁄2	#10	5⁄8	9⁄16	13⁄4	1½	5⁄8	2.05	41⁄8	51⁄8
2 ½	31⁄2	1/2	#10	5⁄8	9⁄16	13⁄4	1½	5⁄8	2.55	45⁄8	55/8
3 ¼	41⁄2	3⁄4	#12	3⁄4	¹¹ ⁄16	2	13⁄4	3⁄4	3.25	51/8	71⁄8
4	5	3⁄4	#12	7⁄8	11/16	2	13⁄4	3⁄4	3.82	63⁄8	75⁄8
5	6½	3⁄4	#12	7⁄8	¹⁵ ⁄16	2	13⁄4	1	4.95	83⁄16	93⁄4
6	71⁄2	1	#16	1	1 ½16	21⁄4	21⁄4	11/8	5.73	97/16	111⁄4
7	81⁄2	11⁄4	#20	1	1 ³ ⁄16	23⁄4	23⁄4	11⁄4	6.58	105⁄8	125⁄8
8	91⁄2	11/2	#24	1	1 5⁄16	3	3	1½	7.50	11 ¹³ ⁄16	14
10	125⁄8	2	#24	1 ¹¹ ⁄16	1 ¹³ ⁄16	311/16	311/16	15⁄8	9.62	151/8	19
12	141/8	21/2	#32	1 ¹⁵ ⁄16	21/16	47/16	47⁄16	11 %	11.45	18½	22

www.milwaukeecylinder.com

HOW TO ORDER

For ordering information refer to Page 32.

Series H

Series MH

Series

도

Series A

Series MN

Hyd-Pneu Devices

ii

NOTES:

 For double rod end cylinders, add prefix letter D to cylinder code. Example: DH00151. (Refer to page 26.)

Removable retainer not available for these bore and rod combinations in the H22 and H32 mounting styles.

TABLE 3H

Page

Recom	mended Press	sure Rating
Bore Ø	Standard Flange PSI Rating	3000 PSI Required Flange Thickness
1 ½- 4	3000	Standard
5	2200	1
6	1500	11/2
7	1100	13⁄4
8	800	2
10	1300	21⁄2
12	1000	3

Power Units/Valves

Design Guide

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

Series H, Side Mount and Lug Mount

For Package and Mounting

Dimension see Tables 1H and 2H.

Shown with square retainer. Retainer is circular on bore size

31/4" and larger.

SIDE OR LUG MOUNTED CYLINDERS

The side or lug mounted cylinder provides a fairly rigid mount. These types of cylinders can tolerate a slight amount of misalignment when the cylinder is at full stroke, but as the piston moves toward the blind end, the tolerance for misalignment decreases. It is important to note that if the cylinder is used properly (without misalignment), the mounting bolts are either in simple shear or tension without any compound stresses.

TAPPED HOLES IN CAPS FLUSH MOUNTING

MODEL H41 NFPA STYLE MS4

Not Available With Removable Retainers.

FOOT MOUNTING

CENTERLINE LUG MOUNTING

MODEL H51 NFPA STYLE MS3

TABLE 1H

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	Р	LB	SE	SN	SS ■	V	w	XE	XS	ХТ	Y	ZB	ZE
	5⁄8	H00151	27⁄8	5	63⁄4	27/8	37/8	1⁄4	5⁄8	61⁄2	1%	2	2	61⁄/8	61⁄8
11/2	†1*	H00152	2.78	0	074	21/8	3./8	1⁄2	1	61/8	1¾	23⁄8	23⁄8	61⁄2	7¼
2	1	H01510	21/8	5¼	71⁄8	27⁄8	35⁄8	1⁄4	3⁄4	6 ¹⁵ ⁄16	11%	2%	23⁄8	65⁄8	71/16
2	†1 ¾*	H01511	2 /8	J /4	1 /8	2 /8	5/8	3⁄8	1	73⁄16	21⁄8	2%	25⁄8	61/8	711/16
	1	H01520						1⁄4	3⁄4	71⁄16	21/16	23⁄8	23⁄8	6¾	7%16
2 ½	13⁄8*	H01521	3	5%	7¼	3	33⁄8	3⁄8	1	7 ¹⁵ ⁄16	25⁄16	2%	25⁄8	7	7 ¹³ ⁄16
	†1 ¾*	H01522						1⁄2	11⁄4	7%16	29⁄16	21/8	21⁄8	71⁄4	81/16
	13⁄8	H01530						1⁄4	7⁄8	81⁄4	25⁄16	23⁄4	223/32	71/8	81/8
31⁄4	13⁄4	H01531	319/32	6¼	81⁄2	31⁄2	41⁄8	3⁄8	11⁄8	81⁄2	2%16	3	231/32	81⁄8	91⁄8
	†2*	H01532						3⁄8	11⁄4	85⁄8	211/16	31⁄8	33⁄32	81⁄4	9¼
	13⁄4	H01540						1⁄4	1	8¾	23⁄4	3	215/16	83⁄8	93⁄8
4	2*	H01541	31⁄8	6%	81/8	3¾	4	1⁄4	11/8	81⁄8	21⁄8	31⁄8	31/16	81⁄2	91⁄2
	21⁄2*	H01542						3⁄8	1%	91⁄8	31⁄8	31⁄8	35⁄16	8¾	9¾
	2	H01550						1⁄4	11/8	9¾	21/8	31⁄8	31/16	91⁄4	10½
5	21⁄2	H01551	43/8	71⁄8	101/8	43/8	$4^{1/2}$	3⁄8	13⁄8	10	31⁄8	3%	35⁄16	91⁄2	10¾
Ũ	3	H01552	.,.	. / 0		.,.	.,_	3⁄8	1%	10	31⁄8	3¾	35⁄16	91⁄2	10¾
	31⁄2*	H01553						3⁄8	1%	10	31⁄8	3%	35⁄16	91⁄2	10¾
	21⁄2	H01560													
6	3	H01561	5	83/8	10¾	5	51/8	1/4	11/4	11 ⁵ ⁄16	33/8	31/2	37/16	10¾	12 ¹³ /16
-	31⁄2	H01562		- / -		-	- / -	/ 4	.,.						
	4*	H01563													
	3	H01570													
7	31⁄2	H01571	51/2	91⁄2	131/8	51/2	5¾	1⁄4	11/4	12%16	35⁄8	3 ¹³ ⁄16	3¾	12	13½
,	4	H01572				- / -		/ 4	1/4	/	0,0	0 / 10	07.		
	41⁄2*	H01573													
	5*	H01574													
	31/2	H01580													
8	4	H01581	6¼	10½	14½	6¼	6¾	1⁄4	11/4	13¾	35⁄8	3 ¹⁵ ⁄16	31/8	13¼	141/8
Ū	4½	H01582													
	5	H01583													
	5½* 4½	H01584 H15100						1/	41/		19/	5	43/	16 ¹¹ /16	
10	4 ½ 5	H15100 H15101	01/	1012/		01/	07/	1/4	11/4	_	4%16 4 ¹³ ⁄16	5 5½	4¾	16 ¹⁵ /16	
10	5 5½	H15101	81⁄2	1313/16	-	81⁄2	81/8	1/2	11/2		4 ¹ ³ /16	5¼ 5¼	5 5	16 ¹⁵ /16	-
	51/2 51/2	H15102						1⁄2	1½						
12	5½ 7	H15120	91⁄8	167/16	-	101⁄8	10½	1⁄4	11⁄4	-	53/16	5¾	51⁄2	19%16	-

HOW TO ORDER

For ordering information refer to page 32.

NOTES:

- For double rod end cylinders, add prefix letter D to cylinder code. Example: DH00151. (Refer to page 26.)
- * Tapped holes on H41 rod end cap have a shallower TB depth in these sizes.
- † The standard rod eye or rod clevis will interfere with foot lugs on Model H43. When these rod end accessories are required, use additional rod extension.
- ▲ For double rod end cylinders from 1½" thru 5" bore, add ¼ + F to this dimension.
- For double rod end cylinders from 1½" thru 5" bore, add ¼ to this dimension.

1	0

and Dimensions For rod end styles and dimensions see Table 3 in the

inside cover of catalog.

Rod End Styles

ii

Page

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

TABLE 2H

The dimensions are constant regardless of rod diameter or stroke.

Bore	E	EB	EE	EE	EL	EO	ET	F	G	J	K	NT	R	SB	ST	SU	SW	TB	TN	TS	US
Ø			NPT	SAE																	
1 ½	21⁄2	⁷ ⁄16	1⁄2	#10	7⁄8	3⁄8	3⁄4	3⁄8	1¾	1½	1⁄2	³ ∕8-16	1.63	⁷ ⁄16	1⁄2	¹⁵ ⁄16	3⁄8	9⁄16	3⁄4	3¼	4
2	3	9⁄16	1⁄2	#10	¹⁵ ⁄16	1⁄2	7⁄8	5⁄8	1¾	1½	5⁄8	1⁄2-13	2.05	9⁄16	3⁄4	11⁄4	1⁄2	5⁄8	¹⁵ ⁄16	4	5
2 ½	31⁄2	9⁄16	1⁄2	#10	¹⁵ ⁄16	1⁄2	7⁄8	5⁄8	13⁄4	11/2	5⁄8	5⁄8-11	2.55	¹³ ⁄16	1	1%16	11/16	7⁄8	1 5⁄16	41⁄8	6¼
31⁄4	41⁄2	¹¹ ⁄16	3⁄4	#12	11⁄8	5⁄8	11⁄8	3⁄4	2	1¾	3⁄4	3⁄4-10	3.25	¹³ ⁄16	1	1%16	¹¹ ⁄16	1	1½	51/8	71⁄4
4	5	¹¹ ⁄16	3⁄4	#12	11⁄8	5⁄8	11/8	7⁄8	2	13⁄4	3⁄4	1-8	3.82	1 ½16	11⁄4	2	7⁄8	13⁄8	21/16	6¾	81⁄2
5	6½	¹⁵ ⁄16	3⁄4	#12	1½	3⁄4	1½	7⁄8	2	1¾	1	1-8	4.95	1 ½16	1 1⁄4	2	7⁄8	1½	2 ¹⁵ ⁄16	81⁄4	10
6	71⁄2	1 ½16	1	#16	1 ¹¹ ⁄16	¹³ ⁄16	1%	1	21⁄4	21⁄4	11/8	11⁄4-7	5.73	1 5⁄16	1½	21⁄2	11⁄8	13⁄4	35⁄16	9¾	12
7	81⁄2	1 ¾16	11⁄4	#20	1 ¹³ ⁄16	¹⁵ ⁄16	13⁄4	1	23⁄4	23⁄4	11⁄4	11⁄2-6	6.58	1 %16	1 ¾	21⁄8	13⁄8	11/8	3¾	11¼	14
8	91⁄2	1 5⁄16	1½	#24	2	11⁄8	2	1	3	3	1½	11⁄2-6	7.50	1 %16	1¾	21/8	13⁄8	11/8	4¼	121⁄4	15
10	125⁄8	-	2	#24	-	-	-	1 ¹¹ / ₁₆	311/16	311/16	1 %	11⁄2-6	9.62	1 %16	21⁄4	31⁄2	1%	21⁄4	5¾	151/8	191⁄8
12	141⁄8	-	21⁄2	#32	-	-	-	1 ¹⁵ ⁄16	47⁄16	47/16	11⁄8	11⁄2-6	11.45	1 %16	3	41⁄4	2	21⁄4	71⁄4	181⁄8	227⁄8

www.milwaukeecylinder.com

Series

МH

Series

Ŧ

Series A

Series MN

Series H, Pin and Trunnion Mount

СВ

CW-

CW

B

Pivot pin

included

For Package and Mounting

Dimension see Tables 1H and 2H.

Shown with square retainer.

Series H

PIN AND TRUNNION MOUNTED CYLINDERS

All pin and trunnion cylinders need a provision on both ends for pivoting. These types of cylinders are designed to carry shear loads and the trunnion and pivot pins should be carried by bearings that are rigidly held and closely fit for the entire length of the pin.

> احد ل حه ۰Ŀ

Retainer is circular on bore sizes of 31/4" and larger. **CLEVIS MOUNT** ZC + STROKE -P + STROKE LB + STROKE W See Table 3 - V FF (Inside Cover) .000 Rod End Style ĽЙ <u>ï</u> | MM-MR П EA LR K F

MODEL H61 NFPA STYLE MP1

ROD END TRUNNION MOUNT See "CAUTION NOTE" on page 17. ZB + STROKE -P + STROKE UT LB + STROKE See Table 3 W V (Inside Cover) FF 1 Rod End Style X 11/20 12 2 ТD MM-+ .000 - .001 Ø 33 Trunnion pins Ż F -G→ - 1 --Khard chrome plated MODEL H71 Е -XG **NFPA STYLE MT1 BLIND END TRUNNION MOUNT** ZB + STROKE -P + STROKE UT LB + STROKE W See Table 3 . \/ EE 1 (Inside Cover) Rod End Style X <u>N | //</u> Æ мм́́́М∰ 2 TD + .000 Ø đ -.001 Trunnion pins 3 F - G-ارجا - K -MODEL H72 hard chrome plated F XJ + STROKE **NFPA STYLE MT2 CENTER TRUNNION MOUNT** ZB + STROKE Trunnion pins -P + STROKE hard chrome plated LB + STROKE W See Table 3 ν FF (Inside Cover) Rod End Style 11/1 🗖

G

XC + STROKE

MODEL H73/H74

NFPA STYLE MT4

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	Р	LB	V	W	ХС	XG	XJ	Y	ZB	ZC
	5⁄8	H00151	07/	_	1⁄4	5⁄8	63%8	1%	41⁄8	2	61⁄/8	67⁄8
1 ½	1*	H00152	21/8	5	1/2	1	6¾	21⁄4	51⁄4	23⁄8	6½	71⁄4
•	1	H01510	21/8	5¼	1⁄4	3⁄4	71⁄4	21⁄4	51⁄4	23⁄8	65⁄8	8
2	13⁄8*	H01511	270	0/4	3⁄8	1	71⁄2	21/2	51⁄2	25⁄8	67⁄8	81⁄4
	1	H01520			1⁄4	3⁄4	73⁄8	21⁄4	53⁄8	23⁄8	63⁄4	81/8
2 ½	13⁄8	H01521	3	53⁄8	3⁄8	1	75⁄8	21/2	55⁄8	25⁄8	7	83/8
	1¾*	H01522			1⁄2	11⁄4	71/8	2¾	51/8	27⁄8	71⁄4	85⁄8
	13⁄8	H01530			1⁄4	7⁄8	85/8	25⁄8	6¼	223/32	71/8	95/8
3 ¼	13⁄4	H01531	319/32	6¼	3⁄8	11/8	81/8	21/8	6½	2 ³¹ / ₃₂	81⁄8	97⁄8
	2	H01532			3⁄8	11⁄4	9	3	65⁄8	33/32	81⁄4	10
	13⁄4	H01540			1⁄4	1	9¾	21/8	6¾	2 ¹⁵ /16	83/8	111
4	2	H01541	37⁄8	65⁄8	1⁄4	11⁄8	97⁄8	3	61/8	31/16	81⁄2	111/
	21/2	H01542			3⁄8	13⁄8	101/8	31⁄4	71⁄8	35⁄16	8¾	11½
	2	H01550			1⁄4	11/8	101/2	3	73⁄8	31/16	91⁄4	121/
5	21⁄2	H01551	43⁄8	71⁄8	3⁄8	13⁄8	10¾	31⁄4	75⁄8	35⁄16	91⁄2	123⁄
5	3	H01552	.,,,	.,.	3⁄8	13⁄8	103⁄4	31⁄4	75⁄8	35⁄16	91⁄2	12³⁄
	31⁄2	H01553			3⁄8	13⁄8	10¾	31⁄4	75⁄8	35⁄16	91⁄2	123⁄
	21/2	H01560										
6	3	H01561	5	83⁄8	1⁄4	11/4	121/8	33⁄8	83/8	37/16	10¾	141/
0	31⁄2	H01562								- /		
	4	H01563										
	3	H01570										
	31⁄2	H01571	5½	91⁄2	1/	447	102/	05/	03/	0 37	10	101
7	4	H01572	51/2	91/2	1⁄4	11⁄4	13¾	3%	9¾	3¾	12	161/
	41⁄2	H01573										
	5	H01574										
	31⁄2	H01580										
	4	H01581	01/	101/	1/	41/	15	03/	101/	07/	101/	4 72
8	41⁄2	H01582	6¼	10½	1⁄4	11⁄4	15	3¾	10¼	31⁄8	13¼	173⁄
	5	H01583										
	51⁄2	H01584										
	41⁄2	H15100			1⁄4	11⁄4	191/16	4¾	13¼	43⁄4	1611/16	22%
10	5	H15101	81⁄2	13 ¹³ ⁄16	1⁄2	1½	195⁄16	5	13½	5	16 ¹⁵ /16	2213/
	51⁄2	H15102			1⁄2	1½	195⁄16	5	131/12	5	1615/16	2213/
10	51⁄2	H15120	074	167/	1/	41/	003/	E3/	15½	51/	109/	063/
12	7	H15121	91/8	167/16	1⁄4	11⁄4	223/16	5%	1372	51⁄2	191/16	263/1

HOW TO ORDER

For ordering information refer to Page 32.

Series H

Series

МH

Series

도

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

CAUTION NOTES:

Rod end trunnion mount cylinders in bore sizes 5" through 8" with oversize piston rods, and bore sizes 10" through 18" with all piston rod diameters should not be used over 1500 PSI. If your application requires higher pressure, consult the factory.

NOTES:

 For double rod end cylinders, add prefix letter D to cylinder code. Example: DHM00151. (Refer to page 26.) Double rod ends are not available on clevis mount Series H cylinders.

* Removable retainer not available for these bore and rod combinations: H61 and H73/ H74 mounting styles.

Rod End Styles and Dimensions For rod end styles and dimensions

see Table 3 in the inside cover of catalog. Page ii

to configure and download

CAD files of your cylinders.

Visit milwaukeecylinder.com

Design Guide

TABLE 2H

The dimensions are constant regardless of rod diameter or stroke.

																	13				14				
Bore Ø	СВ	CD	CW	E	EE NPT	EE SAE	F	G	J	К	L	LR	М	MR	TD	TL	тк	тм	UH	UM	тк	тм	UH	UM	UT
1 ½	3⁄4	1⁄2	1⁄2	21⁄2	1⁄2	#10	3⁄8	1¾	1½	1⁄2	3⁄4	5⁄8	1⁄2	²¹ / ₃₂	1	1	1½	4	21⁄2	6	1½	3	3	5	41⁄2
2	11⁄4	3⁄4	5⁄8	3	1⁄2	#10	5⁄8	1 ¾	1½	5⁄8	11⁄4	11⁄8	3⁄4	¹⁵ ⁄16	13⁄8	13⁄8	2	5	33⁄8	7¾	13⁄4	3½	31⁄2	6¼	5¾
2 ½	11⁄4	3⁄4	5⁄8	31⁄2	1⁄2	#10	5⁄8	1 ¾	1½	5⁄8	11⁄4	11⁄8	3⁄4	¹⁵ ⁄16	13⁄8	13⁄8	2	51⁄2	41⁄8	81⁄4	1¾	4	4	6¾	6¼
31⁄4	11/2	1	3⁄4	41⁄2	3⁄4	#12	3⁄4	2	13⁄4	3⁄4	1½	11⁄4	1	1 ³⁄16	13⁄4	13⁄4	21⁄2	7	5	10½	21⁄4	5	5	81⁄2	8
4	2	13⁄8	1	5	3⁄4	#12	7⁄8	2	1¾	3⁄4	21⁄8	11⁄8	13⁄8	13⁄8	1¾	13⁄4	21⁄2	71⁄2	6½	11	21⁄4	51⁄2	61⁄2	9	81⁄2
5	21⁄2	13⁄4	11⁄4	6½	3⁄4	#12	7⁄8	2	13⁄4	1	21⁄4	2	15⁄8	15⁄8	1¾	13⁄4	3	9	7½	12½	3	7	71⁄4	10½	10
6	21/2	2	11⁄4	71⁄2	1	#16	1	21⁄4	21⁄4	11/8	21⁄2	21/16	2	2	2	2	31⁄2	10½	8¾	14½	3¼	81⁄2	8¾	12½	11½
7	3	21⁄2	1½	81⁄2	11⁄4	#20	1	23⁄4	23⁄4	11⁄4	3	25⁄8	23⁄8	23⁄8	21⁄2	21⁄2	4	12	10	17	31⁄2	93⁄4	10	14¾	13½
8	3	3	1½	91⁄2	1½	#24	1	3	3	1½	31⁄4	21⁄8	23⁄4	23⁄4	3	3	41⁄2	13	11	19	4	11	11¾	17	15½
10	4	31⁄2	2	125⁄8	2	#24	1 ¹¹ ⁄16	311/16	311/16	15⁄8	4	31⁄2	31⁄2	31⁄2	31⁄2	31⁄2	5	171⁄8	15¼	241⁄8	5	14	15¼	21	19%
12	41⁄2	4	21⁄4	141⁄8	21⁄2	#32	1 ¹⁵ ⁄16	41/16	41/16	11⁄8	41⁄2	4	4	4	4	4	51⁄2	201/8	19¼	281/8	51⁄2	16½	19¼	241⁄2	221/8

www.milwaukeecylinder.com

Series H, Pin and Trunnion Mount

milwaukee

For Package and Mounting Dimension see Tables 1H and 2H.

PIN AND TRUNNION MOUNTED CYLINDERS

All pin and trunnion cylinders need a provision on both ends for pivoting. These types of cylinders are designed to carry shear loads and the trunnion and pivot pins should be carried by bearings that are rigidly held and closely fit for the entire length of the pin.

CLEVIS MOUNT

TABLE 1H

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	WF	Y	XC	XG	XJ
	7	HM15140	8			1⁄4	31⁄2	6	241/8	5 ¹⁵ /16	16 ¹¹ /16
14	8	HM15141	9	15%	105⁄8	1⁄4	4	6½	25%	67/16	173⁄16
	10	HM15142	-			-	6	81⁄2	27%	87/16	193⁄16
	8	HM15160	9			1⁄4	4	73⁄8	295⁄8	-	-
16	9	HM15161	-	18%	111/8	-	55/8	9	31¼	-	-
	10	HM15162	-	1078		-	6	93⁄8	31%	-	-
10	9		22	13¾	-	55⁄8	93⁄4	35¼	-	-	
18	10	HM15181	-	22	1074	-	6	101⁄8	35%	-	-

The dimensions are constant regardless of rod diameter or stroke.

	Bore Ø	СВ	CD	cw	E	EE SAE	G	J	К	L	LR	М	MR	TD	TL	тк	тм	UH	UM	UT
ſ	14	6	5	3	17¾	#24	41⁄8	41⁄8	1½	5¾	41⁄8	5	5 ¹⁵ ⁄32	41⁄2	41⁄2	51⁄2	19½	19¼	281⁄2	261/8
	16	7	6	31⁄2	201⁄4	#24	51/8	51/8	15⁄8	7	6¼	6	6	-	-	-	-	-	-	-
	18	8	6½	4	221⁄4	#24	61/8	61/8	11 1/8	75⁄8	6¾	6½	6½	-	-	-	-	-	-	-

HOW TO ORDER

For ordering information refer to Page 32.

CAUTION NOTES:

Rod end trunnion mount cylinders in bore sizes 5" through 8" with oversize piston rods, and bore sizes 10" through 18" with all piston rod diameters should not be used over 1500 PSI. If your application requires higher pressure, consult the factory.

NOTES:

 For double rod end cylinders, add prefix letter D to cylinder code. Example: DHM15140. (Refer to page 26.) Double rod ends are not available on clevis mount Series H cylinders.

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

Manipulators

Power Units/Valves

Design Guide

Series H

Series

МH

Series

도

Series A

Series

MN

PISTON ROD END STYLES

STYLE KK2 (4) Spanner holes 33/64" x 1/2" deep B KK₂ KK₂ KK₂

ROD END STYLE CODE NO. 2

ROD END STYLE CODE NO. 5

milwaukee Ulunder

LARGE BORE CYLINDERS

NOTE: Large bore Series H cylinders (14", 16" and 18") must use Table 3H for accurate piston rod end dimensions.

TABLE 3H - Piston Rod Ends

Bore Ø	Rod MM	Thread KK	Α	B +.000 005	F	NA	V	WF
	7	5½-12	7	8	1 ¹⁵ ⁄16	61/8	1⁄4	31⁄2
14	8	5¾-12	8	9	1 ¹⁵ ⁄16	71/8	1⁄4	4
	10	7¼-12	10	-	31⁄2	97⁄8	-	6
	8	5¾-12	8	9	1 ¹⁵ ⁄16	71/8	1⁄4	4
40	9	6½-12	9	-	33⁄8	87⁄8	-	55/8
16	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6
10	9	6½-12	9	-	33⁄8	81/8	-	55⁄8
18	10	71⁄4-12	10	-	31⁄2	91⁄8	-	6

For Package and Mounting Dimension see Tables 1H and 2H.

SOLID ROD END CAP MOUNTED CYLINDERS

Milwaukee Cylinder's solid rod end cap mount is one of the strongest, most rigid methods of mounting. This type of mounting is best in a tension application.

Flange rated for 3,000 PSI operation.

MODEL H35 NFPA STYLE ME5

SOLID BLIND END CAP MOUNTED CYLINDERS

Milwaukee Cylinder's solid blind end cap mount is one of the strongest, most rigid methods of mounting. This type of mounting is best in a thrust load application.

Flange rated for 3,000 PSI operation.

MODEL H36 NFPA STYLE ME6

TABLE 1H

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	Р	LB	RD	V	w	WF	XF	Y	ZB
	5⁄8	H00151	11⁄8	21⁄8	5	2.38	1⁄4	5⁄8	1	5%	2	61⁄/8
1½	1	H00152	11/2	2.78	5	2.50	1/2	1	13%	6	23⁄8	6½
2	1	H01510	11⁄2	27⁄8	51⁄4	3.00	1⁄4	3⁄4	13⁄8	6	23⁄8	65⁄8
2	13⁄8	H01511	2	2/0		3.00	3⁄8	1	15⁄8	6¼	25⁄8	67⁄8
	1	H01520	11⁄2			3.00	1⁄4	3⁄4	13⁄8	61⁄/8	23⁄8	63⁄4
2 ½	13⁄8	H01521	2	3	5%	3.00	3⁄8	1	15⁄8	63⁄8	25⁄8	7
	13⁄4	H01522	23⁄8			3.50	1⁄2	11⁄4	11⁄/8	65⁄8	21/8	71⁄4
	13⁄8	H01530	2			3.50	1⁄4	7⁄8	15⁄8	71⁄8	223/32	71⁄8
31⁄4	13⁄4	H01531	23⁄8	319/32	6¼	3.50	3⁄8	11/8	11⁄/8	73⁄8	231/32	81⁄8
	2	H01532	25⁄8			4.00	3⁄8	11⁄4	2	71⁄2	33/32	81⁄4
	13⁄4	H01540	23⁄8			3.50	1⁄4	1	11⁄/8	75⁄8	215/16	83⁄8
4	2	H01541	25⁄8	37⁄8	65⁄8	4.00	1⁄4	11/8	2	73⁄4	31⁄16	81⁄2
	21⁄2	H01542	31⁄8			4.50	3⁄8	13⁄8	21⁄4	8	35⁄16	83⁄4
	2	H01550	25⁄8			4.00	1⁄4	11/8	2	81⁄4	31⁄16	91⁄4
5	21⁄2	H01551	31⁄8	43⁄8	71⁄8	4.50	3⁄8	13⁄8	21⁄4	81⁄2	35⁄16	91⁄2
5	3	H01552	3¾			5.12	3⁄8	13⁄8	21⁄4	81⁄2	35⁄16	91⁄2
	31⁄2	H01553	41⁄4			5.50	3⁄8	13⁄8	21⁄4	81⁄2	35⁄16	91⁄2
	21/2	H01560	31⁄8			4.50						
6	3	H01561	33⁄4	5	83/8	5.50	1⁄4	11/4	21⁄4	95%8	37⁄16	10¾
Ū	31⁄2	H01562	41⁄4			5.88						
	4	H01563	43⁄4			6.38						
	3	H01570	3¾			5.50						
	31⁄2	H01571	41⁄4	5½	91⁄2	5.88	1⁄4	41/	01/	10¾	03/	12
7	4	H01572	43⁄4	J72	372	6.38	74	11⁄4	21⁄4	10%4	3¾	12
	41⁄2	H01573	51⁄4			6.88						
	5	H01574	5¾			7.31						
	31⁄2	H01580	41⁄4			5.88						
	4	H01581	43⁄4	61/	101/	6.38	1⁄4	417	21⁄4	113/	07/	1.01/
8	41⁄2	H01582	51⁄4	6¼	10½	6.88	74	11⁄4	274	11¾	31⁄8	13¼
	5	H01583	5¾			7.31						
	51⁄2	H01584	6¼			8.43						
	41⁄2	H15100	51⁄4			6.88	1⁄4	11⁄4	2 ¹⁵ ⁄16	151/16	43⁄4	16 ¹¹ / ₁₆
10	5	H15101	5¾	81⁄2	1313/16	7.31	1⁄2	11⁄2	33⁄16	155⁄16	5	16 ¹⁵ ⁄16
	51⁄2	H15102	6¼			8.43	1⁄2	11/2	33⁄16	155⁄16	5	16 ¹⁵ /16
12	51⁄2	H15120	6¼	97⁄8	167/16	8.43	1/	11/	03/	1 7 ¹ / ₁₆	5½	19%16
12	7	H15121	8	5/0	10/16	10.50	1⁄4	11⁄4	33⁄16	17.716	572	19716

HOW TO ORDER

For ordering information refer to Page 32.

NOTES:

 For double rod end cylinders, add prefix letter D to cylinder code. Example: DH00151. (Refer to page 26.)

Rod End Styles and Dimensions For rod end styles and dimensions see Table 3 in the inside cover of catalog.

Page

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download

CAD files of your cylinders.

es ne ii Series H

Series MH

Series LH

Series A

Series

NΝ

For bore diameter sizes 14" to 18" see next page.

TABLE 2H

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EE NPT	EE SAE	F	FB	G	J	К	PA	PD	R	TF	UF
1 ½	21/2	1⁄2	#10	3⁄8	⁷ /16	1¾	1½	1⁄2	³ ⁄16	1 ½16	1.63	37/16	4¼
2	3	1/2	#10	5⁄8	9⁄16	13⁄4	11/2	5⁄8	5⁄16	1 ¹ ³ / ₁₆	2.05	41⁄8	51⁄8
2 ½	31⁄2	1⁄2	#10	5⁄8	^{9/} 16	13⁄4	1½	5⁄8	5⁄16	21/16	2.55	45⁄8	5%
3 ¼	41⁄2	3⁄4	#12	3⁄4	¹¹ /16	2	13⁄4	3⁄4	3⁄8	25⁄8	3.25	57⁄8	71⁄8
4	5	3⁄4	#12	7⁄8	11/16	2	13⁄4	3⁄4	7⁄16	2 ¹⁵ /16	3.82	63⁄8	75⁄8
5	61⁄2	3⁄4	#12	7⁄8	¹⁵ ⁄16	2	13⁄4	1	7⁄16	311/16	4.95	8 ³ ⁄16	93⁄4
6	71⁄2	1	#16	1	1 1⁄16	21⁄4	21⁄4	11⁄8	1⁄2	41⁄4	5.73	97/16	111⁄4
7	81⁄2	11⁄4	#20	1	1 ³ ⁄16	23⁄4	23⁄4	11⁄4	1/2	43⁄4	6.58	105⁄8	121/8
8	91⁄2	11/2	#24	1	1 5⁄16	3	3	11⁄2	1⁄2	51⁄4	7.50	11 ¹³ ⁄16	14
10	125⁄8	2	#24	1 ¹¹ ⁄16	1 ¹³ ⁄16	311/16	311/16	15⁄8	¹³ ⁄16	71⁄8	9.62	151/8	19
12	141⁄8	21⁄2	#32	1 ¹⁵ ⁄16	21/16	47⁄16	47⁄16	17⁄8	¹⁵ ⁄16	83⁄8	11.45	18½	22

www.milwaukeecylinder.com

J,

G

For Package and Mounting **Dimension see** Tables 1H and 2H.

SOLID END CAP MOUNTED CYLINDERS

Milwaukee Cylinder's solid end cap mount is one of the strongest, most rigid methods of mounting. This type of rod end cap mounting is best in a tension application. A solid blind end cap mounting is best in a thrust application.

SOLID ROD END CAP MOUNT (16" and 18" Bore) See Table 3H WF LB (Page 23) Rod End Style В EE \bullet Fti \oplus \oplus \oplus MM (\uparrow) \oplus \oplus \oplus _FB 8-Holes J G K_ F **MODEL HM35**

16"and 18" Bore Sizes

SOLID BLIND END CAP MOUNT (14" BORE) See Table 3H WF (Page 23) LE Rod End Style EE \oplus Ŧ мм •

MODEL HM36 14" Bore Size

FB

-4-Holes

TABLE 1H

The dimensions given on this table are affected by the piston rod diameter and the stroke. (H21, H22)

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	WF	Y	RD	XF
	7	HM15140	8			1⁄4	31⁄2	6	10½	191⁄8
14	8	HM15141	9	15%	10%	1⁄4	4	61⁄2	11½	19%
	10	HM15142	-			-	6	81⁄2	14½	21%
	8	HM15160	9			1⁄4	4	73⁄8	11½	225/8
16	9	HM15161	-	18%	111/8	-	55/8	9	131/8	241⁄4
	10	HM15162	-			-	6	93⁄8	14½	24%
18	9	HM15180	-	22	13¾	-	55⁄8	93⁄4	131⁄8	275⁄8
10	10	HM15181	-		10/4	-	6	101/8	141⁄2	28

HOW TO ORDER

For ordering information refer to Page 32.

NOTES:

• For double rod end cylinders, add prefix letter D to cylinder code. Example: DHM15140. (Refer to page 26.)

TABLE 2H

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EE SAE	EJ	FB	G	J	К	R	RA	TF	UF
14	17¾	#24	-	25/16	41⁄8	41⁄8	11/2	13.26	-	21.00	25
16	201⁄4	#24	20	1 ¹³ ⁄16	51/8	51/8	15⁄8	15.50	8	21.00	241/2
18	221⁄4	#24	23	21/16	67⁄8	67⁄8	11 %	18.00	71⁄4	24.25	28¼

MilCad Cylinder Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

Series H

Series

МH

Series LH

Series A

Series

MN

PISTON ROD END STYLES

STYLE KK2 (4) Spanner holes 33/64" x 1/2" deep NAł KK. E-А VL

ROD END STYLE CODE NO. 2

Design Guide

ROD END STYLE CODE NO. 5

23

TABLE 3H - Piston Rod Ends

LARGE BORE CYLINDERS

NOTE: Large bore Series H cylinders

rod end dimensions.

(14", 16" and 18") must use

Table 3H for accurate piston

Bore Ø	Rod MM	Thread KK	Α	B +.000 005	F	NA	V	WF
	7	51⁄2-12	7	8	1 ¹⁵ ⁄16	61/8	1⁄4	31⁄2
14	8	5¾-12	8	9	1 ¹⁵ ⁄16	71⁄8	1⁄4	4
	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6
	8	5¾-12	8	9	1 ¹⁵ ⁄16	71/8	1⁄4	4
16	9	6½-12	9	-	33⁄8	87⁄8	-	55⁄8
	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6
18	9	6½-12	9	-	3%	81/8	-	55⁄8
	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6

Series H, Solid End Cap Mount

milwaukee

For Package and Mounting Dimension see Tables 1H and 2H.

SOLID END CAP MOUNTED CYLINDERS

Milwaukee Cylinder's solid end cap mount is one of the strongest, most rigid methods of mounting. This type of rod end cap mounting is best in a tension application. A solid blind end cap mounting is best in a thrust application.

SOLID ROD END CAP SQUARE MOUNTING

SOLID BLIND END CAP SQUARE MOUNTING

MODEL HM22

Series H

TABLE 1H

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	WF	Y	RD	XF
	7	HM15140	8			1⁄4	31⁄2	6	10½	191⁄8
14	8	HM15141	9	15%	10%	1⁄4	4	61⁄2	11½	19%
	10	HM15142	-			-	6	81⁄2	141⁄2	21%
	8	HM15160	-			-	4	73⁄8	11½	225⁄8
16	9	HM15161	-	18%	111/8	-	55/8	9	131/8	24¼
	10	HM15162	-			-	6	93⁄8	14½	245⁄8
18	9	HM15180	-	22	13¾	-	55⁄8	93⁄4	131⁄8	275⁄8
10	10	HM15181	-		1074	-	6	101/8	14½	28

HOW TO ORDER

For ordering information refer to Page 32.

NOTES:

• For double rod end cylinders, add prefix letter D to cylinder code. Example: DHM15140. (Refer to page 26.)

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EE SAE	EX	FB	G	J	К	R	TF
14	17¾	#24	21¾	1 ¹³ ⁄16	47⁄8	41⁄8	1½	12.90	18.43
16	201⁄4	#24	241⁄2	1 ¹³ ⁄16	51/8	51/8	15⁄8	15.28	21.03
18	221⁄4	#24	261⁄2	21/16	61/8	61/8	11 1/8	16.45	22.65

MilCad Cylinder Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

PISTON ROD END STYLES

NAł

ROD END STYLE CODE NO. 2

А

NA

E-

V

STYLE KK2

KK.

STYLE KK5

KK-

(4) Spanner holes 33/64" x 1/2" deep

(4) Spanner holes

33/64" x 1/2" deep

Series H

Series

МH

Series LH

Series A

Series

MN

Cyl Accessories

LARGE BORE CYLINDERS

NOTE: Large bore Series H cylinders (14", 16" and 18") must use Table 3H for accurate piston rod end dimensions.

TABLE 3H - Piston Rod Ends

Bore Ø	Rod MM	Thread KK	A	B +.000 005	F	NA	V	WF
	7	51⁄2-12	7	8	1 ¹⁵ ⁄16	67⁄8	1⁄4	31⁄2
14	8	5¾-12	8	9	1 ¹⁵ ⁄16	71/8	1⁄4	4
	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6
	8	5¾-12	8	9	1 ¹⁵ ⁄16	71/8	1⁄4	4
16	9	6½-12	9	-	33⁄8	81/8	-	55/8
	10	71⁄4-12	10	-	31⁄2	91/8	-	6
18	9	6½-12	9	-	33⁄8	81/8	-	55/8
	10	71⁄4-12	10	-	31⁄2	97⁄8	-	6

_WF ROD END STYLE CODE NO. 5

25

BORE SIZES 1" to 12".

See Table 3 (Inside cover) Rod End Styles. ZM + 2X STROKE ZL + STROKE P + STROKE w LD + STROKE EE E]] мм E B F G G F \bigcirc F 4 \bigcirc Ż BORE SIZES 14" to 18". See Table 3H (on previous page) Rod End Styles. ZM + 2X STROKE ZL + STROKE Y -P + STROKE -WF LD + STROKE

DOUBLE ROD END CYLINDERS

Milwaukee Cylinder's Double Rod End Cylinders are available with all the standard types of Series H mountings, except the clevis mount (H61).

To obtain dimensional information on a double rod end cylinder, first select the desired mounting style and refer to the corresponding single rod end cylinder model shown on the preceding pages. After you have determined all necessary dimensions from the previous page covering the desired mounting, turn back to this page. Supplement those dimensions with additional ones from the drawings below and the table at the right. These added dimensions differ from, or are in addition to, those shown on the preceding pages and provide the additional information needed to completely dimension a double rod end cylinder model.

On a double rod end cylinder where two different rod ends are required, or two different rod sizes are required, or cushions on one end are required, be sure to state clearly which rod is to go at which end of the cylinder. When two types of mounting styles are required, be sure to specify their relationship to the piston rods, if they are not the same.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ZM	ZL	SS*	SE*	LD*	Cylinder Code	Rod MM	Bore Ø
1* DH00152 7% 7% 44% 7% 1 DH01510 6% 8 3% 7% 1 DH01520 8% 3% 7% 1% DH01521 6% 8% 3% 7% 1% DH01521 6% 8% 3% 7% 1% DH01521 6% 8% 3% 8% 3% 1% DH01531 7% 9% 4% 9% 3% 1% DH01531 7% 9% 4% 9% 4 2 DH01540 7% 10 4% 9% 4 2 DH01550 11% 10 4% 9% 5 DH01551 8% 111% 4% 10% 3% DH01550 111% 4% 10% 11% 3% DH01560 111% 11% 11% 11% 6 3 DH01570 13% 5	61%8	6¾	41⁄8	7%	E5/	DH00151	5⁄8	11/6
2 1%* DH01511 6% 8 3% 7% 2½ 1% DH01520 8% 3% 7% 1%* DH01521 6% 8% 3% 7% 1%* DH01521 6% 8% 3% 7% 3% DH01531 7% 8% 3% 8% 3%4 1% DH01531 7% 9% 4% 9% 4 2 DH01531 7% 9% 4% 9% 4 2 DH01540 7% 10 4% 9% 4 2 DH01550 111% 4% 10% 3 DH01550 111% 4% 10% 3%2 DH01561 9% 111% 4% 10% 3%2 DH01562 113% 5% 113% 5% 3%2 DH01572 10½ 13% 5% 13% 4 DH01572 10½ 13%	75/8	71⁄8	41⁄8	73⁄8	5%	DH00152	1*	1 72
1%* DH01511 8 3% 7% 1 DH01520 8% 3% 3% 7% 1%* DH01521 6% 8% 3% 7% 1%* DH01521 6% 8% 3% 8% 3% 1%* DH01530 7% 8% 3% 8% 3% 1%* DH01530 7% 9% 4% 9% 3% DH01530 7% 9% 4% 9% 4 2 DH01540 10 4% 9% 4 2 DH01542 10 4% 9% 3 DH01552 111% 4% 10% 3 DH01552 111% 4% 10% 3% DH01552 111% 4% 10% 3% DH01561 9% 113% 5% 3% DH01571 11% 13% 5% 3% DH01581 11% 5%	75⁄8	71⁄2	31/8	8	61/	DH01510	1	0
2½ 1¾ DH01521 6¼ 8¼ 3¾ 7¼ 1¾ DH01522 8¼ 3¾ 3¾ 8¼ 3¾ 8¼ 3¼ 1¾ DH01530 7¼ 9½ 4¾ 8½ 3¼ 1¾ DH01530 7¼ 9½ 4¾ 9¼ 4 2 DH01540 10 4¼ 9½ 4 2 DH01540 10 4¼ 9½ 4 2 DH01550 10 4¼ 9½ 3 DH01550 11¼ 4¼ 10% 3½ DH01551 8¼ 11¼ 4¼ 10% 3½ DH01552 11¼ 4¼ 10% 3½ DH01561 9% 11¾ 5½ 3 DH01570 11¼ 5¼ 11¾ 3½ DH01571 13½ 5¾ 11¾ 3½ DH01581 11½ 6¾ 14½ 4 DH0	81/8	73⁄4	37⁄8	8	078	DH01511	1¾*	2
13% DH01522 81% 33% 81% 31% 13% DH01530 71% 91% 43% 83% 31% 13% DH01531 71% 91% 43% 91% 4 2 DH01532 91% 43% 91% 4 2 DH01541 73% 10 41% 91% 4 2 DH01541 73% 10 41% 95% 2½ DH01550 81% 111% 43% 10% 3 DH01550 81% 111% 43% 10% 3 DH01550 81% 111% 43% 10% 3 DH01560 111% 43% 10% 3 DH01561 9% 113% 5% 113% 3 DH01571 13% 5% 113% 5% 3 DH01571 13% 5% 13% 5% 3 DH01571 13% 5% <td>73⁄4</td> <td>75⁄8</td> <td>35⁄8</td> <td>81⁄8</td> <td></td> <td>DH01520</td> <td>1</td> <td></td>	73⁄4	75⁄8	35⁄8	81⁄8		DH01520	1	
1% DH01530 9½ 4% 8% 3% 1¾ DH01531 7¼ 9½ 4% 9¼ 4 2 DH01532 9½ 4% 9¼ 4 2 DH01532 7¼ 10 4¼ 9½ 4 2 DH01542 10 4¼ 9½ 5 2½ DH01550 10 4¼ 9½ 3 DH01552 10 4¼ 10% 3 DH01553 8¼ 11¼ 4¾ 10% 3 DH01562 11¼ 4¾ 10% 11% 4 DH01563 11¼ 5¼ 11% 11% 3 DH01563 11¾ 5¼ 11% 11% 4 DH01563 11¾ 5¼ 11% 11% 3 DH01570 13½ 5¾ 13½ 5¾ 4 DH01572 10½ 13½ 5¾ 13½ 5<	81⁄4	71/8	35/8	81⁄8	6¼	DH01521	13%8	2 ½
3¼ 1¾ DH01531 7¼ 9½ 4¾ 9¼ 2 DH01532 7¼ 9½ 4¾ 9¼ 4 2 DH01540 7¾ 10 4¼ 9½ 4 2 DH01541 7¾ 10 4¼ 9½ 2½ DH01551 7¾ 10 4¼ 9½ 3 DH01551 8¼ 11¼ 4¾ 10% 3 DH01552 11¼ 4¾ 10% 3½ DH01560 11¼ 4¾ 10% 3½ DH01561 9% 11¾ 5½ 3 DH01561 9% 11¾ 5½ 3 DH01571 11½ 13½ 5¾ 3 DH01571 13½ 5¾ 113½ 4½ DH01571 13½ 5¾ 13 3 DH01572 13½ 13½ 5¾ 4½ DH01580 4½ 6¾ 14½ <td>83⁄4</td> <td>81⁄8</td> <td>33⁄8</td> <td>81⁄8</td> <td></td> <td>DH01522</td> <td>1¾*</td> <td></td>	83⁄4	81⁄8	33⁄8	81⁄8		DH01522	1¾*	
2 DH01532 9½ 44% 9¼ 1¾ DH01532 10 4¼ 9½ 4 2 DH01541 7¾ 10 4¼ 9½ 2½ DH01542 10 4¼ 9½ 9½ 5 2½ DH01550 8½ 11¼ 4¾ 10% 3 DH01553 8¼ 11¼ 4¾ 10% 3 DH01553 11¼ 4¾ 10% 3½ DH01563 11¼ 4¾ 10% 3½ DH01563 11¼ 5½ 11% 3½ DH01563 11¾ 5½ 11% 3½ DH01570 31½ 13½ 5¾ 3½ DH01571 10½ 13½ 5¾ 4½ DH01573 13½ 5¾ 13 3½ DH01581 14½ 6¾ 14½ 4½ DH01582 11½ 6¾ 14½ 5½ DH01584	9	81/8	43⁄8	91⁄2		DH01530	13%8	
1¾ DH01540 7¾ 10 4¼ 9½ 2 DH01541 7¾ 10 4¼ 9½ 2½ DH01542 10 4¼ 9½ 3 DH01550 10 4¼ 9½ 3 DH01551 8¼ 11¼ 4¾ 10% 3½ DH01553 11¼ 4¾ 10% 3½ DH01563 11¼ 4¾ 10% 3½ DH01561 9¾ 111¾ 5½ 3 DH01562 9¾ 11¾ 5½ 3 DH01563 9¾ 11¾ 5½ 3½ DH01563 11¾ 5¾ 11¼ 4 DH01573 13½ 5¾ 11¾ 3½ DH01573 13½ 5¾ 13 3½ DH01581 14½ 6¾ 14½ 4 DH01581 14½ 6¾ 14½ 5½ DH01582 11½ 14½ 6¾ </td <td>91⁄2</td> <td>91⁄8</td> <td>43⁄8</td> <td>91⁄2</td> <td>71⁄4</td> <td>DH01531</td> <td>13⁄4</td> <td>31⁄4</td>	91⁄2	91⁄8	43⁄8	91⁄2	71⁄4	DH01531	13⁄4	31⁄4
4 2 DH01541 7% 10 4¼ 9% 2½ DH01542 10 4¼ 9% 5 2½ DH01550 3 11¼ 4% 10% 3 DH01552 8¼ 11¼ 4% 10% 3½ DH01552 8¼ 11¼ 4% 10% 3½ DH01563 8¼ 11¼ 4% 10% 6 3 DH01562 9% 11¾ 5½ 11% 3½ DH01563 9% 11¾ 5½ 11% 4 DH01563 11¾ 5½ 11% 13½ 3½ DH01570 13½ 5¾ 13% 5¾ 3½ DH01571 10½ 13½ 5¾ 13% 4½ DH01581 11½ 14½ 6¾ 14½ 3½ DH01582 11½ 14½ 6¾ 14½ 5 DH01583 11½ 6¾ 14½	93⁄4	91⁄4	43⁄8	91⁄2		DH01532	2	
10 10 47.4 0.78 2½ DH01542 10 4¼4 97% 2½ DH01550 11¼ 44% 10% 3½ DH01551 8¼ 11¼ 44% 10% 3½ DH01553 8¼ 11¼ 44% 10% 3½ DH01561 9% 11¼ 44% 10% 3½ DH01562 9% 11¾ 5½ 11% 4 DH01562 9% 11¾ 5½ 11% 3½ DH01570 13% 5¾ 11% 3½ DH01571 13½ 5¾ 13 3½ DH01573 13½ 5¾ 13 3½ DH01581 11½ 14½ 6¾ 14¼ 4 DH01582 11½ 6¾ 14¼ 14¼ 5 DH01583 11½ 6¾ 14¼ 6¾ 4 DH01582 11½ 6¾ 14¼ 6¾	93⁄4	91⁄2	41⁄4	10		DH01540	13⁄4	
2 DH01550 11¼ 4¾ 10% 2½ DH01550 8¼ 11¼ 4¾ 10% 3 DH01552 8¼ 11¼ 4¾ 10% 3½ DH01553 11¼ 4¾ 10% 3½ DH01560 11¼ 4¾ 10% 3½ DH01561 9% 11¼ 5½ 3½ DH01562 11¾ 5½ 11¾ 4 DH01562 11¾ 5½ 11¾ 3½ DH01570 13½ 13½ 5¾ 3½ DH01573 13½ 5¾ 13 3½ DH01581 11½ 13½ 5¾ 4 DH01581 11½ 6¾ 14½ 5 DH01582 11½ 6¾ 14½ 4½ DH01582 11½ 6¾ 14½ 5½ DH01583 11½ 6¾ 14½ 6 DH01582 11½ 6¾ 14½ </td <td>10</td> <td>95/8</td> <td>41⁄4</td> <td>10</td> <td>7¾</td> <td>DH01541</td> <td>2</td> <td>4</td>	10	95/8	41⁄4	10	7¾	DH01541	2	4
21½ DH01551 8¼ 11¼ 4¾ 10% 3 DH01552 11¼ 4¾ 10% 10% 3½ DH01553 11¼ 4¾ 10% 3½ DH01560 11¼ 4¾ 10% 3½ DH01561 9% 11¾ 5½ 3½ DH01562 11¾ 5½ 11¾ 4 DH01563 9% 11¾ 5½ 3½ DH01570 11¾ 5¼ 11¾ 3½ DH01571 13½ 5¾ 13% 3½ DH01572 10½ 13½ 5¾ 4 DH01573 13½ 5¾ 13% 3½ DH01580 14½ 6¾ 14½ 4 DH01581 11½ 6¾ 14¼ 5 DH01583 14½ 6¾ 14¼ 6 DH01583 14½ 6¾ 14¼ 5 DH01583 14½ 6¾ 14¼ <	10½	91/8	41⁄4	10		DH01542	21/2	
5 2½ DH01551 8¼ 11¼ 4¾ 10% 3½ DH01552 11¼ 4¾ 10% 10% 3½ DH01553 11¼ 4¾ 10% 3½ DH01560 11¼ 4¾ 10% 3½ DH01560 9% 11¾ 5¼ 3½ DH01562 9% 11¾ 5¼ 4 DH01563 9% 11¾ 5¼ 3½ DH01570 11¾ 5¼ 11¾ 3½ DH01571 11½ 13½ 5¾ 3½ DH01572 10½ 13½ 5¾ 4½ DH01573 13½ 5¾ 13 3½ DH01580 14½ 6¾ 14½ 3½ DH01580 14½ 6¾ 14¼ 4 DH01582 11½ 6¾ 14¼ 5 DH01583 14½ 6¾ 14¼ 5 DH01580 - 8½ <	10½	10%	43⁄4	111⁄4		DH01550	2	
$ \begin{array}{ c c c c c c c } \hline 3 & DH01552 & 11114 & 434 & 1056 \\ \hline 312 & DH01553 & 1114 & 434 & 1056 \\ \hline 312 & DH01560 & 936 & 1134 & 516 & \\ \hline 3 & DH01561 & 936 & 1134 & 516 & \\ \hline 312 & DH01562 & 936 & 1134 & 516 & \\ \hline 312 & DH01563 & 1134 & 516 & \\ \hline 312 & DH01570 & 1316 & 534 & \\ \hline 312 & DH01571 & 1012 & 1316 & 534 & \\ \hline 312 & DH01572 & 1012 & 1316 & 534 & \\ \hline 4 & DH01572 & 1012 & 1316 & 534 & \\ \hline 4 & DH01573 & 1316 & 534 & \\ \hline 5 & DH01574 & 1316 & 534 & \\ \hline 312 & DH01580 & 1112 & 1316 & 534 & \\ \hline 4 & DH01581 & 1112 & 1412 & 634 & \\ \hline 4 & DH01581 & 1112 & 1412 & 634 & \\ \hline 4 & DH01581 & 1112 & 1412 & 634 & \\ \hline 5 & DH01582 & 1112 & 1412 & 634 & \\ \hline 5 & DH01584 & 1112 & 634 & \\ \hline 10 & 5 & DH15101 & 1512 & -876 & 1836 & \\ \hline 5 & DH15101 & 1512 & -876 & 1836 & \\ \hline 12 & 512 & DH15102 & -876 & 1836 & \\ \hline 12 & 512 & DH15120 & 1836 & - & 1012 & \\ \hline 14 & 8 & DHM15140 & -876 & 1836 & \\ \hline 16 & 9 & DHM15161 & 1556 & - & - & 2256 & \\ \hline 10 & DHM15161 & 1856 & - & - & 2256 & \\ \hline 10 & DHM15161 & 1856 & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & DHM15160 & - & - & - & 2256 & \\ \hline 10 & - & 102 &$	118	10%	43⁄4	111⁄4	Q 1/ ₄	DH01551	21/2	F
2½ DH01560 11¾ 5¼ 3 DH01561 9% 11¾ 5¼ 3½ DH01562 9% 11¾ 5¼ 4 DH01563 11¾ 5¼ 11¾ 3½ DH01563 11¾ 5⅓ 11¾ 3½ DH01570 13¼ 5¾ 11¾ 3½ DH01571 13¼ 5¾ 13¼ 4 DH01572 10½ 13¼ 5¾ 4 DH01573 13¼ 5¾ 13 5 DH01574 11½ 6¾ 14½ 3½ DH01580 14½ 6¾ 14½ 4 DH01581 11½ 6¾ 14½ 5 DH01582 11½ 6¾ 14½ 6¾ 4 DH01584 11½ 6¾ 14½ 6¾ 5 DH01584 11½ 6¾ 14½ 6¾ 10 5 ½ DH15100 - 8% 1	11	105⁄8	43⁄4	111⁄4	074	DH01552	3	5
2½ DH01560 11¾ 5¼ 3 DH01561 9% 11¾ 5¼ 3½ DH01562 9% 11¾ 5⅓ 4 DH01563 11¾ 5⅓ 11¾ 3½ DH01570 11¾ 5⅓ 11¾ 3½ DH01570 13⅓ 5¾ 13⅓ 3½ DH01571 13⅓ 5¾ 13⅓ 4½ DH01573 13⅓ 5¾ 13⅓ 5 DH01574 10½ 13⅓ 5¾ 3½ DH01580 14½ 6¾ 4 DH01581 11½ 14½ 6¾ 4 DH01582 11½ 6¾ 14½ 5 DH01583 14½ 6¾ 14½ 6¾ 14½ 6¾ 14½ 6¾ 14½ 10 5 DH15101 15½ - 8% 18% 12 5½ DH15120 18% - 10½ 21¼	11	105⁄8	43⁄4	111⁄4		DH01553	31/2	
6 3½ DH01562 9% 11¾ 5% 11¾ 4 DH01563 11¾ 5% 11¾ 11¾ 3 DH01563 11¾ 5% 11¾ 3½ DH01570 13% 5¾ 13% 5¾ 3½ DH01571 10½ 13% 5¾ 13% 4 DH01572 10½ 13% 5¾ 13% 5 DH01574 13% 5¾ 13% 5 DH01574 13% 5¾ 13% 3½ DH01580 14½ 6¾ 14½ 3½ DH01582 11½ 6¾ 14½ 6 DH01583 11½ 6¾ 14½ 5 DH01584 14½ 6¾ 14½ 5½ DH0583 14½ 6¾ 14½ 10 5½ DH15100 - 8% 18% 12 5½ DH15101 15½ - 8% 18			51/8	113⁄4			21/2	
3½ DH01562 11¾ 5¼ 11¼ 4 DH01563 11¾ 5¼ 11¼ 3 DH01570 11¾ 5¼ 11¾ 3½ DH01570 13¼ 5¾ 13¼ 5¾ 3½ DH01571 13¼ 5¾ 13¼ 5¾ 4 DH01572 10½ 13¼ 5¾ 13 4½ DH01573 10½ 13¼ 5¾ 13 3½ DH01574 10½ 13¼ 5¾ 13 3½ DH01580 14½ 6¾ 14½ 6¾ 4 DH01582 11½ 14½ 6¾ 14¼ 5 DH01583 14½ 6¾ 14¼ 5½ DH15101 15½ - 8% 18% 10 5 ½ DH15102 - 8% 18% 12 5½ DH15120 18% - 10½ 21¼ 7 DHM15140			51/8	113⁄4	034			<u> </u>
4 DH01563 11¾ 5¼ 3 DH01570 13¼ 5¾ 3½ DH01571 13¼ 5¾ 4 DH01572 13¼ 5¾ 4½ DH01573 13¼ 5¾ 5 DH01574 13¼ 5¾ 3½ DH01573 13¼ 5¾ 5 DH01574 13¼ 5¾ 3½ DH01580 14½ 6¾ 4 DH01581 14½ 6¾ 4½ DH01582 11½ 14½ 6¾ 4½ DH01582 11½ 14½ 6¾ 5½ DH01584 14½ 6¾ 14½ 5½ DH01584 14½ 6¾ 14½ 6¾ 14½ 6¾ 14½ 6¾ 10 5½ DH15100 15½ - 8½ 12 5½ DH15120 18% - 10½ 7 DH15120 18%	117⁄8	113⁄4	51/8	113⁄4	9%			6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			51/8	113⁄4			4	
3½ DH01571 13½ 5¾ 13 4 DH01572 10½ 13¼ 5¾ 13 4½ DH01573 10½ 13¼ 5¾ 13 5 DH01574 13¼ 5¾ 13 5¾ 3½ DH01573 13¼ 5¾ 13 5¾ 3½ DH01574 13¼ 5¾ 13 5¾ 4 DH01574 13¼ 5¾ 14½ 6¾ 4 DH01580 14½ 6¾ 14½ 6¾ 5 DH01582 11½ 14½ 6¾ 14¼ 5 DH01583 11½ 6¾ 14½ 4½ DH15100 15½ 14½ 6¾ 14½ 10 5½ DH15102				131/8				
4 DH01572 10½ 13½ 5¾ 13 4½ DH01573 13½ 5¾ 13½ 5¾ 13 5 DH01574 13½ 5¾ 13½ 5¾ 13 3½ DH01574 13½ 5¾ 13½ 5¾ 13½ 5¾ 4 DH01580 13½ 14½ 6¾ 14½ 6¾ 14½ 4 DH01581 11½ 14½ 6¾ 14½ 6¾ 14¼ 6¾ 14¼ 6¾ 14¼ 6¾ 14¼ 6¾ 14¼ 6¾ 14¼ 6¾ 14¼ 6¾ 14¼ 6¾ 14¼ 6¾ 14¼ 6¾ 14½ 6¾ 14¼ 6¾ 14½ 6¾ 14½ 6¾ 14½ 14½ 6¾ 14½ 14½ 6¾ 14½ 6¾ 14½ 6¾ 14½ 14½ 6¾ 14½ 14½ 6¾ 14½ 14½ 6¾ 14½ 14½ 14½ <		13					-	
$ \begin{array}{ c c c c c c c } \hline & 41/2 & DH01573 \\ \hline & 5 & DH01574 \\ \hline & 5 & DH01574 \\ \hline & 31/2 & DH01580 \\ \hline & 4 & DH01581 \\ \hline & 4 & DH01581 \\ \hline & 4 & DH01581 \\ \hline & 4 & DH01582 \\ \hline & 5 & DH01582 \\ \hline & 5 & DH01583 \\ \hline & 51/2 & DH01584 \\ \hline & 111/2 & 63/4 \\ \hline & 141/2 & 63/4 \\ \hline & 151/2 & - & 87/8 \\ \hline & 188/8 & DH15120 \\ \hline & 188/8 & - & - & 211/8 \\ \hline & 10 & DHM15141 & 185/8 & - & - & 221/8 \\ \hline & 10 & DHM15161 & 185/8 & - & - & 221/8 \\ \hline & 10 & DHM15161 & 185/8 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & 225/8 \\ \hline & 10 & DHM15160 & - & - & - & - & 225/8 \\ \hline & 10 & - & - & - & - & 225/8 \\ \hline & 10 & - & - & - & - & 225/8 \\ \hline & 10 & - & - & - &$	13				101⁄2			7
$ \begin{array}{ c c c c c c c } \hline 13 & 53 & 13 & 53 & 13 & 53 & 13 & 53 & 13 & 53 & 13 & 53 & 13 & 53 & 13 & 1$								1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	141⁄4			11½			8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, .						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	18%		-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18½			_	151/2			10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	181⁄2			_	1072			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	007/			_				
7 DHM15140 20% 14 8 DHM15140 15% 21% 10 DHM15142 15% -21% 10 DHM15142 - 23% 8 DHM15160 - 24¼ 16 9 DHM15161 18% - 25% 10 DHM15162 - 26¼	201/8	21¼		_	18%			12
14 8 DHM15141 15% 21½ 10 DHM15142 15% 23½ 8 DHM15160 24¼ 16 9 DHM15161 18% 25% 10 DHM15162 26¼	22%	20%	10/2					
10 DHM15142 - - 23% 10 DHM15142 - - 23% 8 DHM15160 - - 24% 9 DHM15161 18% - - 25% 10 DHM15162 - - 26%	23%		_		15%		-	14
10 DHM15160 - - 24¼ 16 9 DHM15161 18% - - 25% 10 DHM15162 - - 26¼ 9 DHM15162 - - 26¼	275%		_	_				•••
16 9 DHM15161 18% - - 25% 10 DHM15162 - - 26¼ 9 DHM15162 - - 26¼	26%		_	_				
10 DHM15162 261/4	2078		_	_	18%			16
9 DHM15180 29 ¹ / ₂	30%		_	_	10/0			
	331/4			_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3374		_	_	22		-	18

DOUBLE ROD END CYLINDERS

*Note: These dimensions are to be substituted for the related mounting dimensions given on the preceding pages. All dimensions given on this table are plus stroke.

Dimensional Data

Key Mount

KEY MOUNT CYLINDERS

The *Milwaukee Cylinder* Key Mount retainer plate is a mounting option designed to add rugged stability to foot and side mount cylinders. The retainer plate is extended below the mounting surface of the cylinder. This extension may be fitted into a milled keyway in your mounting pad, eliminating the need for welded keys or locator pins.

HOW TO ORDER

For ordering information refer to Page 32.

KEY MOUNT CYLINDERS

Bore Ø	E	F	FA	G	PA	PD
1½	21/2	3⁄8	.312/.310	1 ¾	³ ⁄16	17⁄16
2	3	5⁄8	.562/.560	13⁄4	5⁄16	1 ¹³ ⁄16
2 ½	31⁄2	5⁄8	.562/.560	13⁄4	5⁄16	21/16
3¼	41⁄2	3⁄4	.687/.684	2	3⁄8	25⁄8
4	5	7/8	.812/.809	2	7⁄16	215/16
5	6½	7⁄8	.812/.809	2	7⁄16	311/16
6	71⁄2	1	.937/.934	21⁄4	1/2	41⁄4
7	81⁄2	1	.937/.934	23⁄4	1/2	43⁄4
8	91⁄2	1	.937/.934	3	1/2	51⁄4
10	125⁄8	1 ¹¹ ⁄16	1.625/1.620	311/16	¹³ ⁄16	71⁄8
12	141⁄8	1 ¹⁵ ⁄16	1.875/1.870	47⁄16	¹³ ⁄16	83⁄8

Key Mount is not available on larger bore cylinders.

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders. Series A

Series H

Series MH

Hyd-Pneu Devices

Manipulators

Design Guide

Series H, Design Options

Oversize Port Welded Boss

SAE Straight Thread O-ring Port

Metallic Rod Wipers

DESIGN OPTIONS

Standard Ports

The *Milwaukee Cylinder* Series H cylinders are manufactured as standard, with the largest possible NPTF tapered thread ports that will fit in both the rod and blind ends of a given bore size. Upon request, extra ports can be provided on the sides of the end caps not occupied by mountings or cushion adjusters.

Oversize Ports

On most bore sizes, welded bosses may be provided for oversize NPTF ports. These bosses protrude from the sides of the end caps. For information as to the boss height in relation to your bore and port requirements, contact the factory. Also, special heavier end caps can be provided to accommodate oversize ports without the use of a welded boss.

Straight Thread Ports

On request, an SAE straight thread O-Ring port can be used on the Series H cylinders. In addition to the standard oversize NPTF ports, welded bosses may also be used for oversize SAE straight thread O-Ring ports. For further information contact the factory.

Note: Flange and manifold style ports are available.

Bleeder Ports

Bleeder ports are not regularly furnished with Series H cylinders. Automatic air bleeds are standard on non-cushion cylinders. Bleeder ports are available upon request. They will be placed on either end cap or on the tube.

PORT SIZES

Bore		Oversized	SAE St	traight O-Ring Port
Ø	NPTF Port EE	NPTF Port EE ₁	EE2	SAE Standard Thread Series
1 ½	1⁄2	3⁄4	#10	7⁄8-14
2	1⁄2	3⁄4	#10	7⁄8-14
2 ½	1⁄2	3⁄4	#10	7⁄8-14
31⁄4	3⁄4	1	#12	11/16-12
4	3⁄4	1	#12	11/16-12
5	3⁄4	1	#12	11/16-12
6	1	11⁄4	#16	15⁄16-12
7	11⁄4	11/2	#20	1%-12
8	11/2	2	#24	17⁄8-12
10	2	21/2	#24	17⁄8-12
12	21⁄2	3	#32	21⁄2-12

4-Bolt Flange Ports Heavy-duty Hydraulic Cylinders

Bore	Rod	Neminal Flance					
Ø	Ø	Nominal Flange					
Ø	Ø	Size					
		(in)					
	1.38	.75					
31⁄4	1.75	.75					
	2.00	.75					
	1.75	.75					
4	2.00	.75					
	2.50	.75					
	2.00	.75					
5	2.50	.75					
5	3.00	.75					
	3.50	.75					
	2.50	1.00					
6	3.00	1.00					
Ŭ	3.50	1.00					
	4.00	1.00					
	3.00	1.25					
	35.00	1.25					
7	4.00	1.25					
	4.50	1.25					
	5.00	1.25					
	3.50	1.50					
	4.00	1.50					
8	4.50	1.50					
	5.00	1.50					
	5.50	1.50					

NOTE: Some flange overhang will occur on heads or caps in most cylinder designs. Overhang may interfere with some end mountings.

Rod Boots

When cylinders are used in areas of high contamination or where contaminants have an air hardening property, the exposed piston rod should be covered with a rod boot to protect the rod bearing and seals. A rod boot is simply a collapsible cover. It is of sewn construction made from a neoprene coated fabric. The rod boots are impervious to oil, grease and water.

They will operate effectively from 0° F to +200° F without cracking. For additional details on Rod Boots, please see page 186.

Metallic Rod Wipers

If requested metallic rod wipers will be supplied in place of the standard synthetic rubber wiper. This type of seal is recommended for applications where contaminants would tend to cling to the rod and damage a standard synthetic rubber rod wiper.

Special Design Options

DESIGN OPTIONS FOR SPECIAL CYLINDERS

Special Rod Ends

Modifications of standard or entirely special rod ends are available from *Milwaukee Cylinder*. When your requirements call for a special rod end style, your order should include a sketch if it is to be an entirely special rod end or note reference as to which letter dimensions you wish to have modified (see inside cover).

Special Assemblies from Standard Parts

Each style of the various standard cylinder mountings is illustrated, using the commonly recognized cylinder dimensional symbols of the National Fluid Power Association. Each side of the end views are numbered to aid in communication when referring to the relationship between the ports and the mountings. When requesting information or placing an order that requires a dimension other than standard, always make reference to the given dimensional symbol in the catalog and then give your requirements.

Cushion Adjustment Locations

A ball check and a cushion adjustment needle are supplied as standard in position #2 on most models. The cushion needle and ball check are interchangeable as far as location and may be put in any side not occupied by a port or mounting.

Port Locations

Ports are located in position #1 as standard unless otherwise specified. By using the position numbers given with the end views in the

dimensional data section of this catalog, ports can be arranged in any one of four 90° positions in relation to the cylinder mounting. When ports are relocated on a cushioned cylinder, the cushion needle and ball check are automatically relocated to hold their relationship to the port as on a standard cylinder, unless otherwise specified at the time of the order.

Removable Trunnion Pins

Removable trunnion pins are available on models H71 and H72 at a nominal extra charge. They can be used on all bore and rod combinations, except on the largest oversize rods offered with each bore size on all model H71 cylinders.

Single-Acting Cylinders

Series H cylinders are designed for either single or double action. When used as a single acting cylinder, hydraulic power drives the piston in one direction, only relying on either the load or an external force to return the piston after the pressure is exhausted.

Single-Acting Spring Cylinders

Single-acting spring return cylinders normally have a spring inside of the cylinder to return the piston to its original position. The application load and friction conditions must be specified when placing an order to properly size the spring. Also specify whether the spring is to return or advance the piston. A spring return cylinder is designed with a stop tube to act as spring guide, which prevents binding of the cylinder due to misalignment of the spring. To accurately determine the cylinder length and mounting dimensions for your application, contact your local Milwaukee Cylinder representative or the factory.

Water Service Cylinders

Series H cylinders can be used with water as an operating fluid with some standard modifications to the types of material and the manufacturing processes used. These modifications will include, at some additional cost, bronze piston, nickel plated end caps, a hard chrome plated cylinder barrel and a chrome plated piston or stainless steel piston rod at extra cost. Due to the increased factors of corrosion, electrolysis and mineral deposits acting within a water fitted cylinder, Milwaukee Cylinder cannot warrant or make any guarantees other than a water service cylinder will be free of defects in workmanship or materials.

Proximity Switches

End of Stroke Limit Switches:

We provide inductive proximity switches for end of stroke sensing. These non-contact switches detect the presence of the spud/ cushion bushing. See page 185 for more information.

Combined Mountings

Standard mountings may be combined when specified by the customer. Some examples of this are:

These and other combinations can be readily made from standard parts. If you are unsure of a possible combination or if it will suit your particular needs, consult with your local *Milwaukee Cylinder* representative or contact the factory.

Adjustable Stroke Cylinders

When a cylinder application requires stroke adjustment, *Milwaukee Cylinder* offers a number of designs, the most common of which is illustrated below. This particular design is externally adjustable, incorporating a threaded rod (of piston rod quality) with the standard hydraulic rod end multiple lip vee seal and bushing design. This provides a proven-effective high and low pressure seal, affording maximum sealing on the stroke adjustment rod.

Further information concerning design limitations, cushioning or alternate designs can be obtained by contacting the factory.

29

MN

Series

Series

МH

Series

도

Series A

Cyl Accessories

Manipulators

Series H, Stop Tubes

FIGURE 1

Series H

Stop Tubes For more information on Stop Tubes, see page 181 in the Design Engineer's Guide.

STOP TUBES

Stop tubes are used to maintain bearing pressure within acceptable limits and are recommended on cylinders with long strokes or poorly guided rods.

The stop tube is a spacer between the rod end cap and the piston, which provides separation between the piston and the rod bearing. This separation reduces the moment forces developed between the rod bearing and piston when the rod is extended.

To determine if stop tube is necessary for your cylinder requirements, you have to solve for "K" (refer to Figure 1). If your required cylinder has a "K" dimension in excess of 40 inches, stop tube is required. For each 10 inch increment or fraction thereof in excess of 40 inches, one inch of stop tube is recommended. When stop tube is required, the overall length of the cylinder will be increased by the length of the stop tube to be used.

To determine "K" (see to Figure 1) *Note: W = the rod stick out (refer to pages 8-27)

Cylinder #1, #4, #8 - see Figure 1

K = 4L = 4 (stroke + W*)

Cylinder #2 - see Figure 1

 $K = L = (CA \text{ or } CE) + XG + Stroke \\ Note: \\ CA = rod eye dimension (back inside cover) \\ CE = rod clevis dimension (back inside cover) \\ XG = mounting dimension page 18$

Cylinder #3 – see Figure 1

 $K = L = W^* + Stroke$

Cylinder #5 – see Figure 1

K = L = (CA or CE) + XC + (2 x Stroke)

Note:

CA = rod eye dimension (back inside cover)

CE = rod clevis dimension (back inside cover)

XC = mounting dimension page 18

Cylinder #6 – see Figure 1

K = L = (CA or CE) + XJ + (2 x Stroke)Note:

CA = rod eye dimension (back inside cover) CE = rod clevis dimension (back inside cover) XJ = mounting dimension page 18

Cylinder #7 - see Figure 1

 $K = L/2 = (W^* + Stroke)/2$

When mounting long stroke cylinders, care should be taken to assure cylinder alignment over the entire length of stroke. The use of external guides or swivel bushings is recommended to reduce side load conditions and prolong the cylinder's service life. Note: Stop tube length must be added to "K" factor before making final selection of rod size. This is primarily true in No. 5 long stroke applications.

The stop tube is located between the piston and the rod end cap. It limits the extended stroke of the cylinder, providing additional strength for less cost and reduced weight than the use of an oversize rod.

CYLINDER SIZING

The selection of the correct rod size is one of the most important factors in sizing a cylinder. The standard rod for each bore size that *Milwaukee Cylinder* manufactures is sufficient to handle the maximum tension force that the cylinder is capable of producing. It is primarily in compression and long stroke, high thrust applications that the column strength needs to be considered.

The following steps should be used to determine the proper rod size for an application:

- Select the cylinder bore size required from Table 3 based on the required cylinder thrust force and the operating line pressure at the cylinder.
- Determine the length between mounting points or "L" as shown on Figure 1, page 30.
- Based on the distance between mounting points ("L"), determine the value of "K" as shown on Figure 1, page 30.
- Using the thrust force and the developed "K" dimension, refer to Table 1 to select the proper rod size.
- If an oversized rod is required, re-check the overall length dimension ("K") in Step 1 and confirm your previous rod size selection.

To determine the cylinder pull (tension), stroke force, or displacement, deduct the force or displacement corresponding to the rod size in Table 2 from the force or displacement corresponding to the bore size shown in Table 3.

milwaukee

▼ TABLE 1 - VALUE OF "K" IN INCHES

TADE																
Thrust Force							Pisto	n Rod I	Diamet	t er (in)						
(in-lbs)	⁵ ⁄8	1	1 ¾	1 ¾	2	2 ½	3	3 ½	4	4 ½	5	5 ½	7	8	9	10
400	35	84	134	-	-	-	-	-	-	-	-	-	-	-	-	-
700	30	68	119	-	-	-	-	-	-	-	-	-	-	-	_	-
1,000	26	60	105	156	190	-	-	-	-	-	-	-	-	-	-	-
1,400	24	54	93	144	175	244	308	-	-	-	-	-	-	-	-	-
1,800	23	48	84	127	160	230	294	366	-	-	-	-	-	-	-	-
2,400	18	45	75	114	145	214	281	347	-	-	-	-	-	-	-	-
3,200	16	40	68	103	131	196	262	329	398	-	-	-	-	-	-	-
4,000	12	38	63	93	119	174	240	310	373	446	-	-	_	-	_	-
5,000	9	36	60	87	112	163	225	289	359	426	-	-	-	-	_	_
6,000	-	30	56	82	102	152	209	274	342	411	476	-	_	-	_	-
8,000	-	25	51	76	93	136	186	244	310	375	448	-	-	-	_	-
10,000	-	21	45	70	89	125	172	221	279	349	412	-	_	-	-	-
12,000	-	17	41	64	85	117	155	210	270	326	388	455	-	-	-	-
16,000	-	-	35	57	75	110	141	188	233	291	350	421	_	-	-	-
20,000	-	-	28	52	66	103	136	173	218	270	325	385	-	-	_	-
30,000	-	-	-	39	56	87	120	156	190	232	285	330	-	-	-	-
40,000	-	-	-	24	43	75	108	142	177	210	248	293	-	-	-	-
50,000	-	-	-	-	30	66	97	131	165	201	234	268	408	-	-	-
60,000	-	-	-	-	-	57	88	119	154	190	226	256	384	-	-	-
80,000	-	-	-	-	-	36	71	104	136	170	204	240	336	-	-	-
100,000	-	-	-	-	-	-	56	91	120	154	199	224	324	400	-	-
120,000	-	-	-	-	-	-	45	76	108	146	174	207	313	377	-	-
140,000	-	-	-	-	-	-	-	64	98	129	162	194	301	365	-	-
160,000	-	-	-	-	-	-	-	47	87	118	149	182	279	350	421	-
200,000	-	-	-	-	-	-	-	-	65	98	131	160	260	330	402	-
250,000	-	-	-	-	-	-	-	-	-	72	109	143	236	301	375	-
300,000	-	-	-	-	-	-	-	-	-	-	85	120	212	281	351	420
350,000	-	-	-	-	-	-	-	-	-	-	53	100	195	261	328	396
400,000	-	-	-	-	-	-	-	-	-	-	-	72	182	241	309	374
500,000	-	-	-	-	-	-	-	-	-	-	-	-	152	212	274	341
600,000	-	-	-	-	-	-	-	-	-	-	-	-	114	183	247	310
700,000	-	-	-	-	-	-	-	-	-	-	-	-	70	162	221	280
100,000													10	102	221	200

▼ TABLE 2 - DEDUCTIONS FOR PULL STROKE FORCE & DISPLACEMENT

Piston Rod Ø	Piston Rod Area		Cylinder	Force in F	Pounds for	· Various P	ressures		Displacement /in of Stroke
		500 psi	750 psi	1000 psi	1250 psi	1500 psi	2000 psi	3000 psi	Gallons Oil Displaced
5⁄8	.307	154	230	307	384	461	614	921	.00133
1	.785	393	589	785	981	1178	1570	2355	.00340
13%8	1.485	743	1114	1485	1856	2228	2970	4455	.00643
1 3⁄4	2.405	1203	1804	2405	3006	3608	4810	7215	.01041
2	3.142	1571	2357	3142	3928	4713	6284	9426	.01360
21/2	4.909	2455	3682	4909	6137	7364	9818	14730	.02125
3	7.069	3535	5302	7069	8836	10600	14140	21210	.03060
31/2	9.621	4811	7216	9621	12026	14430	19240	28860	.04165
4	12.57	6285	9428	12570	15708	18860	25140	37710	.05442
41/2	15.90	7950	11920	15900	19880	23850	31800	47700	.06883
5	19.64	9818	14726	19635	24544	29452	39270	58905	.08500
51/2	23.76	11880	17820	23760	29698	35640	47520	71280	.10286
7	38.48	19240	28860	38480	-	57720	76920	115400	.1668
8	50.27	25135	37700	50270	-	75400	100500	150810	.2177
9	63.62	31810	47720	63620	-	95430	127200	190860	.2753
10	78.54	39270	58900	78540	-	117810	157100	235620	.3396

▼ TABLE 3 - THRUST FORCE AND DISPLACEMENT

Cylinder Bore	Piston Area		Cylinder I	Force in Po	ounds for '	Various Pr	essures		Displacement /in of Stroke
Ø		500 psi	750 psi	1000 psi	1250 psi	1500 psi	2000 psi	3000 psi	Gallons Oil Displaced
11/2	1.767	884	1325	1767	2209	2651	3534	5301	.00765
2	3.142	1571	2357	3142	3928	4713	6284	9426	.01360
21/2	4.909	2455	3682	4909	6137	7364	9818	14730	.02125
31⁄4	8.296	4148	6222	8296	10370	12440	16590	24890	.03591
4	12.57	6285	9428	12570	15708	18860	25140	37710	.05442
5	19.64	9820	14730	19640	24544	29460	39280	58920	.08502
6	28.27	14140	21200	28270	35342	42400	56540	84810	.12230
7	38.49	19240	28870	38490	48106	57740	76980	115500	.16660
8	50.27	25140	37700	50270	62832	75400	100500	150800	.21760
10	78.54	39270	58900	78540	98175	117800	157100	235600	.34000
12	113.1	56550	84820	113100	141375	169600	226200	339300	.48960
14	153.9	76950	115400	153900	-	230800	307800	461700	.66620
16	201.1	100600	150800	201100	-	301600	402200	603300	.8706
18	254.5	127200	190900	254500	-	381800	509000	763500	1.102
20	314.2	157100	235600	314200	-	471300	628400	942600	1.306

Series

₹

Series

Ŧ

Cyl Accessories

Manipulators

Power Units/Valves

Ser

ies

NN

Series H, Ordering Information

Feature	Description	Page Number	Code Number	Example
Double Rod End		26	D	H01541 - 31 - 1 4 - 7 × 143/4
Cylinder Code	Refer to Table 1H	9, 11, 13, 15, 17 19, 21, 23, 25	-	
Mounting Style	Model Number Only	8, 10, 12, 14, 16 18, 20, 22, 24	_	
Rod End Style	Code Number	inside front cover	_	←
Cushions	None Rod End Blind End Both Ends	- - - -	1 2 3 4	←
Cyllinder Modifications	Special		S	If Standard Leave Blank
Seals	BUNA-N (-20° to 200° F) Viton (-15° to 350° F) Special		7 8 S	*If Special Describe Requirements
Stroke	Specify in Inches Including Fractional Requirements		_	•

Series H

DUPLICATE CYLINDERS

Duplicate cylinders can be ordered by giving the serial number from the nameplate of the original cylinder. Factory records supply a quick, positive identification.

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders. *NOTE: Use "S" if any special design features or seals are required, describe in detail on your order.

EXAMPLE: The code for a hydraulic cylinder 4" bore, 2" rod, rod end rectangular flange mounting, Style No. 1 rod end, cushion both ends, standard seals with a 14³/₄" stroke is: **H01541-31-14-7x14**³/₄.

HOW TO ORDER

Series H Cylinders

Standard Series H Cylinders can be completely and accurately described by a model number. If your requirements are completely standard, select the alphanumberic codes from above that represent your cylinder and place them in the sequence indicated by the example. Use of the cylinder model number will eliminate untimely delays in handling your order.

General Order Data

- 1. Bore & Rod Size or the Cylinder Code: (refer to pages 8-27)
- 2. Mounting Style: (refer to page 8-27)
- Rod End Style: (refer to inside cover, page ii)
- 4. Cushion Requirements
- 5. Length of Stroke

Application Data

- 1. Port Requirements: refer to page 28.
- Operating Fluid or Medium: Series H Cylinders are equipped with seals for use with hydraulic oil. If other than a quality grade hydraulic oil will be used, specify the type of fluid in your order. See page 184 for more details.
- Temperature Range: Series H Hydraulic Cylinders contain seals of Nitrile (Buna-N) suitable to -20° F to +200° F. Specify your operating temperature if your application does not fall within this temperature range.
- Operating Pressure: Series H Cylinders are rated for 3000 PSI. If your requirements are in excess of the rated pressure, describe your application in your order.
- 5. Accessories: Specify any accessories you require, using the part numbers given on the inside back cover.
- 6. Special Requirements: If you require special seals, rod material, stop tube, center support, adjustable stroke or any other special requirements not covered, specify in detail on your order.
Replacement Parts

REPLACEMENT SEALS OR CYLINDER PARTS

For replacement seals or cylinder parts, the serial number of your cylinder, the cylinder model number and the item number of the part you require (below) should appear on your order. To order entire seal kits for your cylinder, simply specify the serial number and the cylinder model number from page 32 on your request for service parts.

HOW TO ORDER COMPLETE SEAL KITS

When ordering complete seal kits, specify the following information on your order:

- 1. The serial number of the cylinder the seals will be used on.
- 2. The bore and rod size.
- 3. If the cylinder is cushioned.

To eliminate untimely delays in the handling of your order, please use the seal kit code as shown in the example below:

Example:

Buna-N Kit No. XXXXX-7-40

- cylinder code number (refer to pages 8-27)

Viton Kit No. XXXXX-8-40

- cylinder code number (refer to pages 8-27)

23

STANDARD PARTS LIST

Item	Description
No.	
1	Piston Rod
2	Cylinder Barrel
3	Head End Cap
4	Cap End Cap
5	Rod Bushing
6	Retainer Plate
7	Piston
8	Cushion Plunger
9	Cushion Adj. Plunger
10	Ball Check Retainer
11	Ball Check
12	U-Cup Seal & Backup Washer for Piston
13	Rod Vee Ring Set
14	Rear Bearing Ring
15	Rod Wiper
16	O-Ring Seal for Ball Check Retainer
17	Wave Spring
18	Cylinder Barrel O-Ring & Backup Washer
19	Cast Iron Piston Ring, Standard
20	Tie Rod Flex Lock Nut
21	O-Ring Seal for Cushion Adj. Needle
22	Tie Rod
23	Self-Locking Cap Screw

Retainer Plate Cap Screw Torques

For Square Retainer									
Bore	Torque								
Ø	(Ft-lbs)								
1 ½	10								
2	20								
2 ½	20								
31⁄4	40								
4	40								
5	75								
6	100								

For Circular Retainers

Bore	Rod	Torque
Ø		(Ft-lbs)
1 ½	All	3
2	All	6
2 ½	1, 1%	6
L / 2	13⁄4	10
31⁄4	All	10
4	All	10
5	All	10
6	21⁄2	10
6	3, 3½, 4	30
7	All	30
8	31⁄2 - 5	30
U	51⁄2	50
10	4½ - 5	30
12	51⁄2	50
12	All	50

Tie-rod Nut Torques

Nut Torque Specifications

Bore	Torque
Ø	(Ft-lbs)
1 ½	25
2	45
2 ½	45
31⁄4	125
4	125
5	300
6	400
7	600
8	900
10	2500
12	3700

When it is necessary to remove the tie-rod nuts on a cylinder, they must be reassembled to the torque specifications given above. To prevent the tie-rods from twisting when tightened, use a vice grip or locking clamp. Note that the torque specification is based on lubricated threads.

Series H

Manipulators

INSTALLATION FOR SERIES H General Information

Cleanliness

The most important consideration when installing the cylinder. When cylinders are shipped from *Milwaukee Cylinder*, the ports are securely plugged with plastic plugs which should not be removed until the piping is to be installed. All piping should be thoroughly clean, to include the removal of all threading and flaring burrs or chips, before making the connection to the cylinder ports. One chip can cause premature failure of the cylinder or other hydraulic system components.

Alignment

Improper alignment will result in excessive cylinder wear. Check to assure rod alignment between the cylinder and its mating component on your machine in both the extended and retracted positions.

Environment

Cylinders operating in areas where there is weld splatter, fast drying chemicals, paint, excessive heat or other hazardous conditions, should have covers or shields to prevent damage to the rod and rod seals.

Bleeding

Air within the cylinder or system will cause erratic operation of the cylinder. *Milwaukee Cylinders* generally do not require bleed ports if the cylinder ports are mounted in an upright position. Several full strokes of the cylinder will purge air from the cylinder into the circuit piping, where it can be bled off. Bleeder ports are available for applications where the cylinder is the high point of the circuit or where the cylinder does not complete a full stroke during its normal cycle.

MOUNTING RECOMMENDATIONS

Foot Mounted Cylinders

The use of high strength alloy steel mounting bolts 1/16" smaller than the hole size is recommended. After final alignment, foot mounted cylinders should be dowel pinned in place.

Trunnion Mounted Cylinders

Lubricated pillow blocks designed for close tolerance applications should be used. It is important to rigidly mount and align the pillow blocks so that the trunnion pins will not be subjected to any extreme bending moments The rod end should be pivoted with the pivot pin in line and parallel to the axis of the trunnion pins.

Flush Mount Cylinders

The use of high strength alloy steel mounting bolts is recommended. Shear keys should be used to reduce the stress on the mounting bolts created by the normal push and pull forces created by the cylinder cycle.

Flange Mount Cylinders

The controlled diameter rod bushing extension can be used as a pilot to locate the flange mount. Dowel pins should be used after the cylinder is mounted and aligned to prevent shifting.

Clevis Mount Cylinders

This type of cylinder must be pivoted at both ends and the pins must be in line and parallel to each other. After the cylinder is mounted, the customer should check to assure that the cylinder is free to swing through its working arc without interference from other machined parts.

STORAGE

Often times, cylinders are delivered before a customer is prepared to install them and must be stored for a period of time. When storage is required:

- Select an area indoors for storage, which has dry and non-corrosive atmosphere. Take caution to protect the cylinder from both internal and external corrosion.
- Cylinders to be stored should be kept in a vertical position (piston rod up) whenever possible.
- Port protector plugs should be kept in the cylinder ports until the time of installation.

CYLINDER TROUBLE SHOOTING

1. External leakage

If leaking occurs between the end cap and barrel, check tie-rod torque. Do not over torque. If the torque is correct, then replace the barrel seal. When leakage occurs in the rod bushing area, replace the rod seals. If leakage continues or reoccurs in short period of operation, check items 2 thru 5, page 33.

2. Cylinder misalignment

Side load is a common problem which occurs when the cylinder application does not allow the piston rod to work in line during the extend and retract motions of the cylinder. Evidence of this is excessive seal failure, bushing wear or galling of the piston rod. Often, bending of the piston rod or complete failure (breakage) of the rod occurs.

3. Contamination on the piston rod

Dirt and other material is often picked up when the piston rod is extended. When the rod is retracted in an excessive dirty application, it often carries the dirt back into the rod seal cavity of the cylinder, causing damage to the seals. With a slight modification of the cylinder rod end, a rod boot can be added to protect the rod bushing and seals for most applications.

4. Bad mountings

Due to wear of pivot pins or mounting bolts working loose, a cylinder may have side load, even though the rod was in line when the cylinder was first installed. All cylinder mountings should be checked periodically.

5. Damaged piston rod

An extended piston rod can be damaged by the impact of a hard object which could burr the rod. If this occurs, the rod should be checked immediately to prevent seal damage.

6. Internal leakage

Inside the cylinder, leakage past the piston seals can cause sluggish movement or settling of the cylinder under load conditions. This occurs due to leakage of worn piston seals or rings.

7. Creeping cylinder

When a cylinder is stopped in midstroke and it creeps, check for internal leakage. Creeping can also be caused by a worn control valve and this should be checked, even if the cylinder is found to have internal leakage.

8. Erratic operation

When a cylinder is erratic or sluggish in operation, this may be caused by a number of problems. The most common cause of sluggish operation is air in the system. Internal leakage could also be a cause. If the system starts out sluggishly and, as it warms, speeds up, the oil may be of too high viscosity. The whole system should be checked for worn components if after these checks, the cylinder is still operating in a sluggish manner.

CYLINDER MAINTENANCE

Rod Seal Replacement

When changing rod seals, extend the piston rod 3" or more if possible, being sure to support the rod at all times. Remove the retainer plate screws (if tie-rod nuts have to be removed, refer to the nut torque specification on this page when reassembling the cylinder), retainer plate and outer bushing. Using an eye hook or thin screwdriver, pry the vees from the end cap cavity (if low pressure air is applied to the rod end port, this will help to force the vees from the cavity). The new set of vees should be assembled into the cavity separately and lubed with the soft vee in the center. Replace the rod wiper in the bushing and reassemble the cylinder.

Piston Seal Replacement

When changing piston seals, extend the piston rod 3" or more if possible, being sure to support the piston rod and the piston at all times. *Remove the tie-rod nuts, blind end cap, the barrel and then the piston seals. A light grease, compatible with the system fluid, should be used on the rings and block vee seals for smooth assembly. Install the block vee piston seals, scarf cutting on only the back-up washers. Then install the cast iron rings with the joints in opposite directions. To reassemble, start the piston into the tube, compressing the cast iron rings using twine or a ring compressor. When the piston block vee seal is to the edge of the barrel, use a thin rounded blade to start the lip of the block vee, making sure the entire lip is started before moving the piston further into the tube.

***Note:** When a cylinder has been disassembled this far, the barrel seals should at least be inspected, if not replaced.

Barrel Seal Replacement

When replacing barrel seals, use the same method of disassembling the cylinder as used when replacing piston seals. The barrel seal consists of a backup washer and O-Ring, which is assembled on the first step of both ends of the tube, with the backup washer going on first. The outer diameter of the tube groove on the end caps must be checked for nicks or burrs and then greased. Position the end caps squarely on the tube (check to make sure port location is correct) and firmly force or tap the end cap over the tube until it bottoms. Check to make sure the O-Ring did not shear and then finish assembling the cylinder.

Nut Torque Specifications

Cylinder Bore	Torque
	(Ft-lbs)
1½	25
2 - 2 ½	45
3½ - 4	125
5	300
6	400
8	900
10	2500
12	3700

When it is necessary to remove the tie-rod nuts on a cylinder, they must be reassembled to the torque specifications given above. To prevent the tie-rods from twisting when tightened, use a vice grip or locking clamp. Note that the torque specification is based on lubricated threads. Series H

Series

МH

Series

도

Series A

Series

Design Guide

Series MH

Milwaukee Cylinder Series MH ISO Metric Hydraulic Cylinders are built to perform on the toughest applications. Series MH tiered cylinders are built to ISO spec 6020-2, with maximum operating pressures up to 210 bar on all standard bore sizes. If your application requires higher operating pressures, consult our engineers. *Milwaukee Cylinder* helps you solve even more application needs with our expanded ISO Metric Cylinder product line.

		Page
	METRIC Cylinder Piston Rod End	Inside Cover page iii
General	Standard Specifications and Features	38
	Performance Tested Design Features	39
	Tie Rod Mount	40-41
	Solid End Cap and Side Lug Mount	42-43
Mounting Specifications	Pin Mount	44-45
	Trunnion Mount	46-47
	Double Rod End Cylinders	48
Additional Information	Ordering Information	49

Standard Specifications and Features

STANDARD SPECIFICATIONS

- Standard construction square head – tie-rod design
- ISO 6020-2
- Nominal pressure 210 bar; see info box below
- Standard fluid-hydraulic oil

Series H

- Standard temperature -20° C to +105° C
 Standard bore sizes –
- 25 mm thru 200 mm
- Standard piston rod diameters
 12 mm thru 140 mm
- Standard mounting styles– 12 standard styles and custom designs to suit your needs
- Strokes available in any practical stroke length
- Cushions available at either end or both ends of stroke
- Three standard rod end styles and specials designed to order

If your hydraulic operating pressure exceeds

210 bar, send

your application data for engineering evaluation and design recommendations.

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

STANDARD FEATURES

1. Removable Retainer Plate

The retainer plate and rod bushing are externally removable without disassembling the cylinder on most standard models. Four capscrews securely hold and lock the retainer plate in place.

2. Rod Bushing and Seals

A U-cup Rod Seal with a supporting bronze bushing is standard in *Milwaukee Cylinder* Series MH Cylinders.

3. Ports

BSPP/G (ISO 1179-1) cylinder ports are standard and can be located to customer requirements. ISO 6149-1 ports optional.

4. Piston Rod

The piston rod is of high strength steel, hardened and plated to resist scoring and corrosion, assuring maximum life.

5. Piston

The piston is of fine grained alloy iron, incorporating u-cup seals, ensuring non-leak Hi-Lo pressure performance. The piston is pilot fitted and threaded to the rod.

6. Cylinder Barrel and Seals

The barrel is of steel tubing, honed to a fine finish to assure superior sealing, minimum friction and maximum seal life.

7. End Caps

End caps and mountings are of high quality steel, precision machined for accurate mounting.

8. Tie-Rods and Nuts

The tie-rods are constructed from a high quality medium carbon steel. On most sizes the threads are rolled for rigid engagement of the self-locking nuts.

9. Cushions

Cushions are machined to close tolerance to provide positive, smooth deceleration at the end of stroke. On all bore sizes, we provide the longest cushion possible based on the rod size and blind end caps. Longer cushions are available; for further information, consult factory.

10. Cushion Needle Adjustment and Ball Check

The cushion needle adjustment valve and cushion-check ball retainer screw are specifically designed to provide full cushion adjustment.

Performance Tested Design Features

Simple Maintenance...

Simple maintenance is reality with a *Milwaukee Cylinder*. The rod bushing or rod seals can be inspected or serviced by merely removing the cap screws and retainer plate on most models. Standard available shop tools can be used to remove the rod bushing and seals without disturbing the torque on the tie-rods, assuring performance quality with maintenance ease.

COMBINATION ROD SEAL DESIGN...

The Series MH cylinder design is a one-piece rod bushing with a double lip u-cup rod seal, a supporting bearing ring, and a double lip wiper.

Series MH

Series

도

Series MN

Cushion Piston Rod

Cushions...

The cushion is of a high-grade alloy, precision machined and specially tapered to provide smooth deceleration of the piston at the end of stroke.

A standard manufacturing process at *Milwaukee Cylinder* is to assemble the piston, cushion, and the piston rod; placing the assembly between centers and checking the critical diameters for concentricity.

Piston Rod...

The piston rod is hardened, plated high strength steel, machined and processed to resist scoring and corrosion, assuring maximum life. *Milwaukee Cylinder* offers three rod end styles as standard. **The style #2 rod end with two wrench flats is furnished as standard** unless otherwise specified. Special rod ends and extra wrench flats are also available. They must be specified at the time of order, giving the dimensional requirements and the location of additional wrench flats. **COMBINATION SEALING**

qualities of cast iron and the

near zero leakage of the

u-cup seals.

The Series MH cylinder combines two bi-directional sealing u-cup seals and a fine grained alloy iron piston. This proven piston seal design is effective at both high and low pressures. The design gives the wear and shock absorbing

ROD

Series MH, Tie Rod Mount

milwaukee

Series H

25 & 32mm Bore Cylinders F 5mm 5mm

5mm extra height applies to port face at the rod end caps only.

TIE ROD MOUNTED CYLINDERS

The flange and tie-rod mounts are basically the same, except that the cylinder tie-rods are extended and used to mount the cylinder. To prevent misalignment, sagging, or possible binding of the cylinder, when long strokes are required, the free end should be supported. The best use of tie-rods when extending on the blind end is in a thrust load application. When using tie-rods extended on the rod end, the best application is a tension load. Tie rod mounts are suited for many applications, but it should be noted that they are not as rigid as the flange type of mounting.

TIE RODS EXTENDED BOTH ENDS

ZT + STROKE ZB + STROKE -P + STROKE See Metric Piston W LB + STROKE Rod End Table EE - \/ (Inside Cover, page iii) ij ij MN DD -BB+ F -G--.1-BB

MODEL MH10 **ISO STYLE MX1**

TIE RODS EXTENDED ROD END

TIE RODS EXTENDED BLIND END

MODEL MH13 **ISO STYLE MX2**

Е

TABLE 1MH The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	W	Y	ZB	ZT			
05	12	MH0151	24	00	50	C	4.5	50	101	100			
25	18△	MH0152	30	99	53	6	15	50	121	133			
20	14	MH1510	26	103	56	12	05	60	107	150			
32	22†	MH1511	34	103	50	12	25	60	137	152			
40	18	MH1520	30	100	70	6	25	60	160	100			
40	28†	MH1521	42	128	73	12		62	163	188			
	22	MH1530	34			6			174				
50	28	MH1531	42	134	74	0	25	67		205			
	36†	MH1532	50			9							
	28	MH1540	42			6		71					
63	36	MH1541	50	136	80	9	32		183	214			
	45	MH1542	60			13							
	36	MH1550	50		93	5							
80	45	MH1551	60	159		9	31	77	209	249			
	56	MH1552	72										
	45	MH1560	60			7		82	137 163 174 183				
100	56	MH1561	72	168	101	10	35			262			
	70	MH1562	88			10							
	56	MH1570	72										
125	70	MH1571	88	197	117	10	35	86	258	313			
	90	MH1572	108										
	70	MH1580	88										
160	90	MH1581	108	213	130	7	32	86	273	337			
	110	MH1582	133										
	90	MH1590	108						330				
200	110	MH1591	133	267	165	7	32	98		414			
	140	MH1592	163					<u> </u>					

HOW TO ORDER

For ordering information refer to page 49.

CAUTION NOTES:

NOTES:

 For double rod end cylinders, add prefix letter D to cylinder code. Example: DMH0151. (Refer to page 48.)

Series MH

Series 도

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

 \triangle Cushions not available on rod end.

+ Available with fixed nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.

TABLE 2MH The dimensions are constant regardless of rod diameter or stroke.

Е

40

45

63

75

90

115

130

165

205

245

EE

BSPP

1⁄4

1⁄4

3⁄8

1⁄2

1⁄2

3⁄4

3⁄4

1

1

11⁄4

10

10

10

16

16

20

22

22

25

25

G

40

40

45

45

45

50

50

58

58

76

J

25

25

38

38

38

45

45

58

58

76

Κ

7

9

10

15

15

19

19

26

28

31

DD

M5 X 0.8

M6 X 1

M8 X 1

M12 X 1.25

M12 X 1.25

M16 X 1.5

M16 X 1.5

M22 X 1.5

M27 X 2

M30 X 2

and Dimensions For rod end styles and dimensions

see the table in the inside cover of the brochure "METRIC Piston Rod End Styles".

iii

MilCad Cylinder Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

Power Units/Valves

Design Guide

Bore

Ø

25

32

40

50

63

80

100

125

160

200

AA

40

47

59

74 91

117

137

178

219

269

BB

19

24

35

46

46

59

59

81

92

115

Series H

TABLE 1MH

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	RD f8	SS	V	VL min.	W	WF	XF	XS	Y	ZB
05	12	MH0151	24	00	50	00	70	6	0	4.5	05		00	50	101
25	18△	MH0152	30	99	53	38	72	0	3	15	25	114	33	50	121
32	14	MH1510	26	103	56	42	72	12	3	25	35	128	45	60	137
32	22†	MH1511	34	103	50	42	12	12	3	25	35	120	45	00	137
40	18	MH1520	30	128	73	62	97	6	3	25	35	153	45	62	163
40	28†	MH1521	42	120	13	02	97	12	3	25	35	155	43	02	103
	22	MH1530	34					6							
50	28	MH1531	42	134	74	74	91	0	4	25	41	159	54	67	174
	36†	MH1532	50					9							
	28	MH1540	42		80	75		6		32		168	65	71	183
63	36	MH1541	50	136		82	85	9	4		48				
	45	MH1542	60			88		13	-						
	36	MH1550	50	159	93	82		5				190	68	77	209
80	45	MH1551	60			88	104	9	4	31	51				
	56	MH1552	72			105		5							
	45	MH1560	60			92		7		35		203	79	82	
100	56	MH1561	72	168	101	105	101		5		57				222
	70	MH1562	88			125		10							
	56	MH1570	72			105		7							
125	70	MH1571	88	197	117	150	130	10	5	35	57	232	79	86	258
	90	MH1572	108			100									
	70	MH1580	88			125									
160	90	MH1581	108	213	130	170	129	7	5	32	57	245	86	86	273
	110	MH1582	133					'							
	90	MH1590	108			150									330
200	110	MH1591	133	267	165	210	171	7	5	32	57	299	92	98	
	140	MH1592	163			210 17	.,,	1							

HOW TO ORDER

For ordering information refer to page 49.

NOTES:

 For double rod end cylinders, add prefix letter D to cylinder code. Example: DMH0151. (Refer to page 48.) Double rod ends are not available on clevis mount Series MH cylinders

S	
Ser	
es	
<	

Series A

Series

MH

Series LH

Cyl Accessories

Manipulators

riangle Cushions not available on rod end.

FB

5.5

6.5

G

+ Available with fixed nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.

TABLE 2MH The dimensions are constant regardless of rod diameter or stroke.

Κ

R

SB

6.6

ST

8.5

12.5

12.5

SW

TS

TF

UF

US

Rod End Styles

Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

iii

Power Units/Valves Design

Design Guide

* 25 mm and 35 mm port at rod end available in position #1 only (MH42 only).

Bore

Ø

Е

40*

45*

EE

BSPF

1⁄4

1⁄4

3⁄8

1⁄2

1/2

3⁄4

3⁄4

11/4

MilCad Cylinder

Series MH, Pin Mount

25 & 32mm Bore Cylinders

5mm extra height applies to port face at the rod end caps only.

PIN MOUNTED CYLINDERS

All pin cylinders need a provision on both ends for pivoting. These types of cylinders are designed to carry shear loads and pivot pins should be carried by bearings that are rigidly held and closely fit for the entire length of the pin.

FIXED EYE MOUNT

MODEL MH64 ISO STYLE MP3

0

MODEL MH62 **ISO STYLE MP5**

SPHERICAL EYE MOUNT

Pin Mount

TABLE 1MH The dimensions given on this table are affected by the pieter and discuss the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	W	ХС	ХН	Y	ZC	ZH
0.5	12	MH0151	24		50	0	45	107	100		107	450
25	18△	MH0152	30	99	53	6	15	127	130	50	137	150
00	14	MH1510	26	100	50	10	05	1 4 7	140	<u> </u>	150	170 5
32	22†	MH1511	34	103	56	12	25	147	148	60	159	170.5
40	18	MH1520	30	128	73	6	25	172	178	62	100	207
40	28†	MH1521	42	120	75	12	25	172	1/0	02	186	207
	22	MH1530	34			6						
50	28	MH1531	42	134	74	0	25	191	190	67	211	223
	36†	MH1532	50			9						
	28	MH1540	42		80	6		200		71	220	246
63	36	MH1541	50	136		9	32		206			
	45	MH1542	60			13						
	36	MH1550	50	159	93	5					257	
80	45	MH1551	60			9	31	229	238	77		288
	56	MH1552	72			0						
	45	MH1560	60		101	7	35				295	
100	56	MH1561	72	168		-		257	261	82		323
	70	MH1562	88			10						
	56	MH1570	72			7						
125	70	MH1571	88	197	117	10	35	289	304	86	334	384
	90	MH1572	108									
	70	MH1580	88									
160	90	MH1581	108	213	130	7	32	308	337	86	367	437
	110	MH1582	133									
	90	MH1590	108									
200	110	MH1591	133	267	165	7	32	381	415	98	451	535
	140	MH1592	163									
∆ Cusl	nions n	ot available	on rod e	end.								

+ Available with fixed nonadjustable cushions on rod end and standard adjustable cushions on the

HOW TO ORDER

For ordering information refer to page 49.

NOTES:

♦ For double rod end cylinders, add prefix letter D to cylinder code. Example: DMH0151. (Refer to page 48.) Double rod ends are not available on clevis mount Series MH cylinders.

Rod End Styles and Dimensions For rod end styles

Page

and dimensions see the table in the inside cover of the brochure "METRIC Piston

Hyd-Pneu Devices

Series MH

Series 도

Series A

Series

MN

Rod End Styles".

MilCad Cylinder

iii

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

Cyl Accessories

blind end only.

TABLE 2MH The dimensions are constant regardless of red diameter are trained rod diameter or stroke.

Bore Ø	CB A16	CD	СХ	E	EE BSPP	EP	EW h14	EX	F	G	H2 max.	J	K	L	LR	М	MR	N	UB max.
25	12	10	12 -0.008	40	1⁄4	8	12	10	10	40	20	25	7	13	12	10	12	16	24
32	16	12	16 -0.008	45	1/4	11	16	14	10	40	22.5	25	9	19	17	12	15	20	32
40	20	14	20 -0.012	63	3⁄8	13	20	16	10	45	29	38	10	19	17	14	16	25	40
50	30	20	25 -0.012	75	1⁄2	17	30	20	16	45	33	38	15	32	29	20	25	31	60
63	30	20	30 -0.012	90	1⁄2	19	30	22	16	45	40	38	15	32	29	20	25	38	60
80	40	28	40 -0.012	115	3⁄4	23	40	28	20	50	50	45	19	39	34	28	34	48	80
100	50	36	50 -0.012	130	3⁄4	30	50	35	22	50	62	45	19	54	50	36	44	58	100
125	60	45	60 -0.015	165	1	38	60	44	22	58	80	58	26	57	53	45	53	72	120
160	70	56	80 -0.015	205	1	47	70	55	25	58	100	58	28	63	59	59	59	92	140
200	80	70	100 -0.020	245	11⁄4	57	80	70	25	76	120	76	31	82	78	70	76	116	160

www.milwaukeecylinder.com

Series MH, Trunnion Mount

milwaukee

<u>8</u> | # Þ0

For Package and Mounting **Dimension see** Tables 1MH and 2MH.

25 & 32mm Bore Cylinders E

5mm

TRUNNION MOUNTED CYLINDERS

All trunnion cylinders need a provision on both ends for pivoting. These types of cylinders are designed to carry shear loads and the trunnion and pivot pins should be carried by bearings that are rigidly held and closely fit for the entire length of the pin.

5mm extra height applies to port face at the rod end caps only.

ont the rod end. Tie rods are threaded into the rod end cap. Use ZB1 and G1 for this bore size range .

MH72 mount cylinders with bore sized 100mm through 200mm DO NOT have nuts ont the blind end. Tie rods are threaded into the blind end cap, and secured with nuts (K) on the rod end. Use ZB2 and J1 for this bore size range .

5mm

Е

TABLE 1MH The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	w	XG	XJ	Y	ZB	ZB1	ZB2											
05	12	MH0151	24	00	50		45		101	50														
25	18△	MH0152	30	99	53	6	15	44	101	50	121	-	-											
00	14	MH1510	26	100	50	10	0.5	= 4	445		137													
32	22†	MH1511	34	103	56	12	25	54	115	60	137	-	-											
40	18	MH1520	30	100	70	6	0.5		104		163													
40	28t	MH1521	42	128	73	12	25	57	134	62	163	-	-											
	22	MH1530	34			0																		
50	28	MH1531	42	134	74	6	25	64	140	67	174	-	-											
	36†	MH1532	50			9																		
	28	MH1540	42			6		70	149	71	183	-	-											
63	36	MH1541	50	136	80	9	32																	
	45	MH1542	60			13																		
	36	MH1550	50			5																		
80	45	MH1551	60	159	93	0	31	76	168	77	209	-	-											
	56	MH1552	72			9																		
	45	MH1560	60			7	35	71	187	82	222	222*												
100	56	MH1561	72	168	101								216**											
	70	MH1562	88			10																		
	56	MH1570	72			7																		
125	70	MH1571	88	197	117	10	35	75	209	86	258	258*	246**											
	90	MH1572	108			10																		
	70	MH1580	88																					
160	90	MH1581	108	213	130	7	32	75	230	86	273	278*)	275**											
	110	MH1582	133																					
	90	MH1590	108																					
200	110	MH1591	133	267	165	165	165	165	165	165	165	165	165	165	165	165	7	32	85	276	98	330	337*)	331**
	140	MH1592	163																					

HOW TO ORDER

For ordering information refer to Page 49.

CAUTION NOTES:

) Rod end trunnion mount cylinders in 160mm bore (all rod sizes) and 200mm bore, (110 and 140 sizes) should not be used over 100 bar. If your application requires higher pressure, consult the factory.

NOTES:

♦ For double rod end cylinders, add prefix letter D to cylinder code. Example: DMH0151. (Refer to page 48.) Double rod ends are not available on clevis mount Series MH cylinders.

Rod End Styles".

iii

 \triangle Cushions not available on rod end.

+ Available with fixed nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.

* Use this dimension for MH71 mount cylinders with bore sizes 100mm through 200mm.

** Use this dimension for MH72 mount cylinders with bore sizes 100mm through 200mm.

Series MH

Series

도

Series A

Series

MN

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

Page

MilCad Cylinder

Configurator

47

TABLE 2MH The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	BT	E	EE BSPP	F	G	G1	J	J1	K	TD f8	TC h14	TL	TM h14	тк	UH	UM	UT
25	9	40	1⁄4	10	40	-	25	-	7	12	38	10	48	20	45	68	58
32	11	45	1⁄4	10	40	-	25	-	9	16	44	12	55	25	54	79	68
40	14.5	63	3⁄8	10	45	-	38	-	10	20	63	16	76	30	76	108	95
50	17	75	1⁄2	16	45	-	38	-	15	25	76	20	89	40	89	129	116
63	17.5	90	1⁄2	16	45	-	38	-	15	32	89	25	100	40	95	150	139
80	22	115	3⁄4	20	50	-	45	-	19	40	114	32	127	50	127	191	178
100	25	130	3⁄4	22	50	72	45	58	19	50	127	40	140	60	140	220	207
125	31.5	165	1	22	58	80	58	72	26	63	165	50	178	73	178	278	265
160	36.5	205	1	25	58	88	58	88	28	80	203	63	215	90	216	341	329
200	57	245	11⁄4	25	76	108	76	108	31	100	241	80	279	110	280	439	401

* Use this dimension for MH71 mount cylinders with bore sizes 100mm through 200mm.

** Use this dimension for MH72 mount cylinders with bore sizes 100mm through 200mm.

Series MH, Double Rod End

Series MH Series H

5mm extra height applies to port face at the rod end caps only.

DOUBLE ROD END CYLINDERS

Double rod end styles are available in every mounting style except clevis. On double rod end cylinders where the rod ends are not the same, be sure to specify clearly which rod end is to go at which end of the cylinder in relation to your mounting requirements.

To obtain dimensional information on a double rod end cylinder, first select the desired mounting style and refer to the corresponding single rod end cylinder model shown on the preceding pages. After you have determined all necessary dimensions from the previous page covering the desired mounting, turn back to this page. Supplement those dimensions with additional ones from the drawing below and the table at the right. These added dimensions differ from, or are in addition to, those shown on the preceding pages and provide the additional information needed to completely dimension a double rod end cylinder model.

On a double rod end cylinder where two different rod ends are required, or two different rod sizes are required, or cushions on one end are required, be sure to state clearly which rod is to go at which end of the cylinder. When two types of mounting styles are required, be sure to specify their relationship to the piston rods, if they are not the same.

TABLE 2MH

The dimensions are constant regardless of rod diameter or stroke.

	_				
Bore Ø	E	F	G	K	EE BSPP
25	40	10	40	7	1⁄4
32	45	10	40	9	1/4
40	63	10	45	10	3⁄8
50	75	16	45	15	1/2
63	90	16	45	15	1⁄2
80	115	20	50	19	3⁄4
100	130	22	50	19	3⁄4
125	165	22	58	26	1
160	205	25	58	28	1
200	245	25	76	31	11⁄4

V DOUBLE ROD END CYLINDERS

Bore Ø	Rod MM	Cylinder Code	В	LD	PJ	V	W	Y	ZL	ZM	
25	12	DMH0151	24	124	54	6	15	50	146	154	
25	18	DMH0152	30	124	54	0	15	50	140	134	
32	14	DMH1510	26	128	58	12	25	60	162	178	
52	22	DMH1511	34	120	50	12	23	00	102	170	
40	18	DMH1520	30	145	71	6	25	62	180	195	
40	28	DMH1521	42	145	11	12	23	02	100	195	
	22	DMH1530	34			6					
50	28	DMH1531	42	157	73	0	25	67	197	207	
	36	DMH1532	50			9					
	28	DMH1540	42			6					
63	36	DMH1541	50	159	81	9	32	71	206	223	
	45	DMH1542	60			13					
	36	DMH1550	50			5					
80	45	DMH1551	60	184	92	9	31	77	234	246	
	56	DMH1552	72			3					
	45	DMH1560	60			7					
100	56	DMH1561	72	195	101		35	82	249	265	
	70	DMH1562	88			10					
	56	DMH1570	72			7	-				
125	70	DMH1571	88	219	117	10	35	86	280	289	
	90	DMH1572	108								
	70	DMH1580	88								
160	90	DMH1581	108	238	130	7	32	86	298	302	
	110	DMH1582	133								
	90	DMH1590	108								
200	110	DMH1591	133	292	160	7	32	98	355	488	
	140	DMH1592	163								

Series MH, Ordering Information

leave blank

▼ CONFIGURE YOUR CYLINDER (Series MH Metric Cylinder Nomenclature)

Note:

Use "S" if any special design features are required, describe in detail on your order. **Example:**

The code for a MP1 mount metric hydraulic cylinder with an 80mm bore, 56mm rod, Style No. 2 rod end, cushion both ends, standard seals with a 425mm stroke is MH1552-61-24-9 x 425

	Feature	Description	Page No.	Code No.
1	Double Rod End		_	D
2	Cylinder Code	Refer to Table 1MH	7, 9, 11, 13	-
3	Mounting Style	Model Number Only	6, 8, 10, 12	—
4	Rod End Style	Code Number	Inside front cover (iii)	-
5	Cushions	None Rod End Blind End Both Ends	- - - -	1 2 3 4
6	Cylinder Modifications	Special	_	S
7	Seal	Polyurethane (-20° to 200° F)	-	9
8	Stroke	Specify in millimeters	_	_

Series MH

Series MN

Series LH

Milwaukee Cylinder Series LH Low Pressure Hydraulic

Cylinders are built to perform on the toughest applications. The nominal pressure for Series LH ranges from 750 psi to 1500 psi, depending on bore size. Advanced engineering, combined with quality materials and expert workmanship, contribute to the making of a rugged, top quality low-pressure hydraulic cylinder that will provide a long, maintenance-free service life.

		Page
	TABLE 3 - Piston Rod End Styles	Inside Cover, page ii
General	Standard Specifications and Features	52
	Performance Tested Design Features	53
	Tie Rod Mount	54-55
	Flange Mount	56-57
Mounting Specifications	Side Mount and Lug Mount	58-59
	Pin Mount and Trunnion Mount	60-61
	Double Rod End Cylinders Key Mount	62 63
	Design Options	64-65
Additional	Stop Tubes / Cylinder Sizing	66-67
Information	Ordering Information / Replacement Parts	68-69
	Installation / Trouble Shooting / Maintenance	70-71
Accessories	Clevis / Brackets / Pins / Rod Eyes Dimensional Data	Inside Back Cover

Standard Specifications and Features

milwaukee

STANDARD SPECIFICATIONS

- Standard construction square head – tie rod design
 Naminal processor 750 points
- Nominal pressure 750 psi to 1500 psi (range varies by bore size)
- Standard fluid-hydraulic oil
- Standard temperature -20° F to +200° F
- Standard bore sizes 1½" to 6"
- Standard piston rod diameters 5/8" thru 4"
- Standard mounting styles 17 standard styles plus custom designs to suit your needs
- Strokes available in any practical stroke length
- Cushions available at either or both ends of stroke
- Standard 7 rod end styles, plus specials designed to order
- Rod end style KK₂ is studded as standard for 5/4" and 1" diameter rods. Studded rod end style is available for all rod sizes.

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

STANDARD FEATURES

1. Removable Retainer Plate

The retainer plate and rod bushing are externally removable without disassembling the cylinder on most standard models. Four capscrews securely hold and lock the retainer plate in place.

2. Rod Bushing and Seals

A combination of spring loaded multiple lip vee rings with a supporting bronze bushing is standard in *Milwaukee Cylinder* Series LH Cylinders.

3. Ports

Large NPTF cylinder ports are standard and can be located to customer requirements. SAE ports available upon request.

4. Piston Rod

The piston rod is of high strength steel, hardened and plated to resist scoring and corrosion to assure maximum seal life.

5. Piston

The Series LH piston is precision machined from fine grained iron alloy. It is pilot fitted and threaded to the piston rod.

6. Cylinder Barrel and Seals

The barrel is of chrome plated steel tubing, honed to a fine finish to assure superior sealing, minimum friction and maximum seal life. It is step cut on the I.D. of both ends for O-ring seals.

7. End Caps

End caps and mountings are of high quality steel, precision machined for accurate mounting.

8. Tie-Rods

The tie rods are constructed from a high quality medium carbon steel. The threads are accurately rolled for rigid engagement of the nuts.

9. Cushions

Cushions are machined to close tolerance to provide positive, smooth deceleration at the end of stroke. On all bore sizes we provide the longest cushion possible, based on the rod size and blind end caps. Longer cushions are available; for further information, consult factory.

10. Cushion Needle Adjustment and Ball Check

The cushion needle adjustment valve and cushion-check ball retainer screw are specifically designed to provide full cushion adjustment.

Series LH

Series MH

Series H

Performance Tested Design Features

assuring performance quality with maintenance ease.

Cushions...

The cushion is of a high grade alloy, precision machined and specially tapered to provide smooth deceleration of the piston at the end of stroke. The rod end cushion bushing is floated with an O-ring to compensate for minor misalignments during normal operation.

Piston Rod...

The piston rod is hardened, plated high strength steel, machined and processed to resist scoring and corrosion, assuring maximum life. *Milwaukee Cylinder* offers seven rod end styles as standard. **The style #2 rod end with two wrench flats is furnished as standard** unless otherwise specified. Special rod ends and extra wrench flats are also available. They must be specified at the time of order, giving the dimensional requirements and the location of additional wrench flats.

COMBINATION ROD SEAL DESIGN...

The *Milwaukee Cylinder* Series LH cylinder combines spring loaded multiple lip vee rings with a supporting bronze bushing and a double lip wiper as a secondary seal. This proven rod seal design combination is effective at both high and low pressures. It affords maximum sealing and an extra long bearing support.

As an optional design, a one-piece rod bushing with a double lip rod seal and a double lip wiper is available. Metallic rod scrapers may be supplied on request, in place of the double lip wiper with either rod bushing design.

The unique versatility of the *Milwaukee Cylinder* Series LH design makes available a selection of seals to meet all types of service conditions.

near zero leakage of the block

vee seal.

Series LH

53

Series LH, Tie Rod Mount

milwaukee

For Package and Mounting Dimension see Tables 1LH and 2LH.

TIE ROD MOUNTED CYLINDERS

Tie-rod mounts are suited for many applications and are similar to flange mounts, but tie-rod mounts are not as rigid as the flange type of mounting. The best use of tie-rods extended on the blind end is in a thrust load application. When using tie-rods extended on the rod end, the best appllication is a tension load. When long strokes are required, the free end should be supported to prevent misalignment, sagging or possible binding of the cylinder.

TIE RODS EXTENDED BOTH ENDS

MODEL LH10 NFPA STYLE MX1

NO TIE ROD EXTENSION

— ZT + STROKE ZB + STROKE — — P + STROKE

LB + STROKE

11

EE

AA (Bolt Circle)

DD

₋J–⊳∣⊲BB

MODEL LH11 NFPA STYLE MX0

MODEL LH12

NFPA STYLE MX3

TIE RODS EXTENDED ROD END

See Table 3

(Inside Cover)

Rod End Style

MM-{

W

F - G →

TIE RODS EXTENDED BLIND END

1

3

 \angle AA

MODEL LH13 NFPA STYLE MX2

Series MH

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	W	Y	ZB	ZT
41/	5⁄8	LH0051	1 1⁄8	4	01/	1⁄4	5⁄8	1 ¹⁵ ⁄16	5	5%
1½	•1	LH0052	11/2	4	21⁄4	1/2	1	25/16	5 ³ ⁄8	6
	5⁄8	LH0510	11/8			1⁄4	5⁄8	1 ¹⁵ ⁄16	51/16	53⁄4
2	1	LH0511	11/2	4	21⁄4	1/2	1	25/16	57/16	61⁄8
	•1¾	LH0512	2			5⁄8	11⁄4	2%16	115/16 5 55/8 $25/16$ $53/8$ 6 $115/16$ $51/16$ $53/4$ $25/16$ $51/16$ $53/4$ $25/16$ $51/16$ $61/8$ $29/16$ $51/16$ $63/8$ $215/16$ $59/16$ $61/4$ $29/16$ $51/16$ $63/4$ $29/16$ $51/16$ $63/4$ $29/16$ $51/16$ $61/2$ $21/16$ $61/16$ $63/4$ $21/16$ $63/8$ $71/4$ $215/16$ $65/8$ $71/2$ $31/16$ $63/4$ $75/8$ $27/16$ $61/8$ 7 $215/16$ $65/8$ $71/2$ $31/16$ $63/4$ $75/8$ $37/16$ $63/4$ $75/8$ $35/16$ $71/16$ $83/16$ $215/16$ $65/16$ $71/176$ $211/16$ $61/16$ $71/16$ $211/16$ $61/16$ $71/16$	
	5⁄8	LH0520	1 1⁄8			1⁄4	5⁄8	1 ¹⁵ ⁄16	5 ³ ⁄16	51/8
2 ½	1	LH0521	11/2	41⁄8	23⁄8	1/2	1	25/16	5%16	6¼
E /2	13⁄8	LH0522	2	470	270	5⁄8	11⁄4	2%16	5 ¹³ ⁄16	6½
	•1¾	LH0523	23⁄8			3⁄4	1½	213/16	61/16	6¾
	1	LH0530	11/2			1⁄4	3⁄4	27/16	61⁄8	7
3¼	13⁄8	LH0531	2	47⁄8	25/8	3⁄8	1	211/16	63/8	71⁄4
J /4	13⁄4	LH0532	23⁄8	170	270	1⁄2	11⁄4	2 ¹⁵ /16	65⁄8	71⁄2
	2	LH0533	25⁄8			1⁄2	13⁄8	31⁄16	6¾	7%
	1	LH0540	11/2			1⁄4	3⁄4	27/16	61⁄/8	7
	13⁄8	LH0541	2			3⁄8	1	2 ¹¹ /16	63⁄8	71⁄4
4	13⁄4	LH0542	23⁄8	41/8	25⁄8	1⁄2	11⁄4	2 ¹⁵ /16	65⁄8	71⁄2
	2	LH0543	25⁄8			1⁄2	13⁄8	31⁄16		
	21⁄2	LH0544	31⁄/8			5⁄8	15⁄8	35⁄16		
	1	LH0550	11/2			1⁄4	3⁄4	27/16	67/16	711/16
	13⁄8	LH0551	2			3⁄8	1	211/16		
_	13⁄4	LH0552	23⁄8	F1 /	07/	1⁄2	11⁄4	2 ¹⁵ /16	615/16	8 ³ ⁄16
5	2	LH0553	25⁄8	51⁄8	21/8	1⁄2	13⁄8	31/16		
	21⁄2	LH0554	31⁄8			5⁄8	15⁄8	35⁄16		
	3	LH0555	3¾			5⁄8	15⁄8	35⁄16		
	31⁄2	LH0556	41⁄4			5⁄8	15⁄8	35⁄16		
	13⁄8	LH0560	2			1⁄4	7⁄8	2 ¹³ /16		
	13⁄4	LH0561	23⁄8			3⁄8	11⁄8			
	2	LH0562	25⁄8	5¾	31⁄/8	3⁄8	11⁄4			
6	21⁄2	LH0563	31⁄8	374	3 1/8	1⁄2	1½			
	3	LH0564	3¾			1⁄2	1½			
	31⁄2	LH0565	41⁄4			1⁄2	1½	37⁄16		
	4	LH0566	43⁄4			1⁄2	1½	37/16	7 ¹³ ⁄16	91/16

HOW TO ORDER

For ordering information refer to Page 68.

NOTES:

- For double rod end cylinders, add prefix letter D to cylinder code. Example: DLH0051 (Refer to page 62.)
- Available with fixed-nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.

Recommended Pressure Rating

Pressure Rating

(psi)

1500

1500

1500*

1500

1000 1000*

750

2¹/₂" Bore, ⁵/₈" Rod, Rating 1000 psi 5" Bore, 1" Rod, Rating 750 psi

Bore

Ø

11/2

2

2½

31⁄4

4

5

6 *NOTE:

1	
l	Cyl A
I	cces
I	sorie
	S

Series LH

Series A

Series MN

Hyd-Pneu Devices

Valves Design Guide

TABLE 2LH The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	AA	BB	DD	E	EE NPT	EE SAE	F	G	J	К
1½	2.02	1	1⁄4-28	2	3⁄8	#6	3⁄8	1½	1	3⁄8
2	2.60	1 1⁄8	5⁄16-24	21/2	3⁄8	#6	3⁄8	11/2	1	7⁄16
2 ½	3.10	1 1⁄8	5⁄16-24	3	3⁄8	#6	3⁄8	11/2	1	7⁄16
31⁄4	3.90	13⁄8	3⁄8-24	3¾	1⁄2	#10	5⁄8	13⁄4	11⁄4	1⁄2
4	4.70	13⁄8	3⁄8-24	41⁄2	1⁄2	#10	5⁄8	13⁄4	11⁄4	1⁄2
5	5.80	1 ¹³ ⁄16	1⁄2-20	51⁄2	1⁄2	#10	5⁄8	13⁄4	11⁄4	9⁄16
6	6.90	1 ¹³ ⁄16	1⁄2-20	6½	3⁄4	#12	3⁄4	2	11⁄2	9⁄16

www.milwaukeecylinder.com

Series LH, Flange Mount

milwaukee

-J -→ Fl-

þ

-.1-

EE

V

For Package and Mounting Dimension see Tables 1LH and 2LH.

FLANGE MOUNTED CYLINDERS

The flange mount is one of the strongest, most rigid methods of mounting. With this type of mount there is little allowance for misalignment, though when long strokes are required, the free end opposite the mounting should be supported to prevent sagging and possible binding of the cylinder.

The best use of a blind end flange is in a thrust load application (rod in compression). Rod end flange mounts are best used in tension applications. When a less rigid mount can be used and the cylinder can be attached to a panel or bulkhead, an extended tie-rod mounting could be considered.

ROD SQUARE FLANGE MOUNTING

BLIND SQUARE FLANGE MOUNTING

ROD RECTANGULAR FLANGE MOUNTING

4

Ė4

→ B → FB ↓ +F→-G·

2 R

<u>,</u>

BLIND RECTANGULAR FLANGE MOUNTING

See Table 3

(Inside Cover)-Rod End Style

в мм

Series H

MODEL LH21

NFPA STYLE MF5

Flange Mount

TABLE 1LH The dimensions given on this table are affected by the niston red diameter and the piston rod diameter and the stroke.

Bore	Rod	Cylinder	В	LB	Р	V	W	Y	ZB	ZF
Ø	MM	Code ♦								
41/	5⁄8	LH0051	11/8	4	01/	1⁄4	5⁄8	1 ¹⁵ ⁄16	5	5
1 72	•1*	LH0052	1½	4	∠ 1⁄4	1⁄2	1	25/16	5¾	5¾
	5⁄8	LH0510	11/8			1⁄4	5⁄8	1 ¹⁵ ⁄16	5	5
2	1	LH0511	1½	4	21⁄4	1⁄2	1	25/16	57/16	5¾
	• 1 ¾*	LH0512	2			5⁄8	11⁄4	115/16 5 5 1 $25/16$ $53/6$ $55/8$ 1 $25/16$ $53/6$ $55/8$ $5/8$ $115/16$ $51/16$ $53/8$ 1 $25/16$ $57/16$ $53/8$ 1 $25/16$ $51/16$ $55/8$ 1 $29/16$ $51/16$ $55/8$ 1 $25/16$ $53/46$ $51/2$ 1/4 $29/16$ $51/36$ $51/2$ 1/4 $29/16$ $51/36$ $51/2$ 1/4 $29/16$ $51/36$ $51/4$ 1 $21/16$ $61/8$ $61/4$ 1 $211/16$ $63/8$ $61/2$ 1/4 $215/16$ $65/8$ $63/4$ 1/8 $31/16$ $63/4$ $67/8$ 1/4 $215/16$ $65/8$ $63/4$ 1/4 $215/16$ $61/16$ $61/2$ 1/4 $215/16$ $61/16$ $61/2$ 1/4		
	5⁄8	LH0520	11/8			1⁄4	5⁄8	1 ¹⁵ ⁄16	5 ³ ⁄16	51⁄/8
21/2	1	LH0521	1½	41/8	23/8	1⁄2	1	25/16	5%16	51⁄2
-/2	13⁄8	LH0522	2	.,	270	5⁄8	11⁄4	29⁄16	5 ¹³ ⁄16	5¾
	• 1 ¾*	LH0523	23⁄8			3⁄4	1½	2 ¹³ ⁄16	61/16	6
	1	LH0530	1½			1⁄4	3⁄4	27/16	61⁄8	6¼
31/4	13⁄8	LH0531	2	47/8	25/8	3⁄8	1	2 ¹¹ /16	63%8	61⁄2
	13⁄4	LH0532	23⁄8	4'/8	270	1⁄2	11⁄4	2 ¹⁵ /16	65⁄8	6¾
	2*	LH0533	25⁄8			1⁄2	13⁄8	31⁄16	6¾	61/8
	1	LH0540	1½			1⁄4	3⁄4	27/16	61⁄/8	6¼
	13⁄8	LH0541	2			3⁄8	1	211/16	63⁄8	61⁄2
4	13⁄4	LH0542	23⁄8	41/8	25⁄8	1⁄2	11⁄4	2 ¹⁵ /16	65⁄8	6¾
	5% LH0051 •1* LH0052 5% LH0510 1 LH0511 •1% LH0512 5% LH0522 1 LH0521 5% LH0522 1 LH0521 1% LH0522 •13% LH0523 1 LH0533 1% LH0533 1% LH0533 1% LH0542 2* LH0543 1% LH0544 1% LH0544 1% LH0544 1 LH0544 1 LH0544 1 LH0544 1 LH0544 1% LH0544 1% LH0544 1 LH0544 1 LH0544 1% LH0554 3 LH0556 3½ LH0556 3½ LH0556 3½ LH0566 3	LH0543	25⁄8			1⁄2	13⁄8	31⁄16		61/8
	21⁄2*	LH0544	31⁄8			5⁄8	15⁄8	35⁄16	7	71⁄8
	1	LH0550	1½			1⁄4	3⁄4	27/16	67/16	61⁄2
	13⁄8	LH0551	2			3⁄8	1	2 ¹¹ /16	611/16	6¾
	13⁄4	LH0552	23⁄8		07/	1⁄2	11⁄4	2 ¹⁵ /16	615/16	7
5	2	LH0553	25⁄8	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	71⁄8					
	21/2	LH0511 1½ 4 2¼ LH0512 2 1½ 4½ LH0520 1½ 4½ 2¾ LH0521 1½ 4½ 2¾ LH0522 2 4⅓ 2⅓ LH0523 2⅔ 4⅓ 2⅓ LH0523 2⅔ 4⅓ 2⅓ LH0530 1½ 4⅓ 2⅓ LH0531 2 2¾ 4⅓ 2‰ LH0533 2⅔ 4⅓ 4‰ 2‰ LH0543 2‰ 4‰ 2‰ 2‰ LH0541 2 4‰ 4‰ 2‰ LH0543 2‰ 4‰ 2‰ 2‰ LH0543 2‰ 4‰ 2‰ 2‰ LH0550 1½ 1½ 2‰ 2‰ LH0551 2 2‰ 5‰ 3‰ 2‰ LH0553 2‰ 3‰ 5‰ 1½ 2‰ LH0555 3¾ 1‰ 2‰ 1‰ 2‰ LH05555 3¾ 1‰ 2‰		5⁄8	15⁄8	35⁄16	75⁄16	73⁄8		
	3	LH0555	3¾			5⁄8	15⁄8	35⁄16	75⁄16	73⁄8
	31⁄2*	LH0556	41⁄4			5⁄8	15⁄8	35⁄16	75⁄16	73⁄8
	13⁄8	LH0560	2			1⁄4	7⁄8	2 ¹³ ⁄16	7 ³ ⁄16	73⁄8
	13⁄4	LH0561	23⁄8			3⁄8	11⁄8	31⁄16	71/16	75⁄8
	2	LH0562	25⁄8	50/	01/	3⁄8	11⁄4	33⁄16		73⁄4
6			31⁄8	5%	31/8	· –	11⁄2	37⁄16		-
	3	LH0564	3¾			1⁄2	1½	37/16	713/16	8
	31⁄2	LH0565	41⁄4]		1/2	1½	37/16	713/16	8
	4	LH0566	43⁄4			1⁄2	1½	37/16	7 ¹³ ⁄16	8

HOW TO ORDER

For ordering information refer to Page 68.

NOTES:

- For double rod end cylinders, add prefix letter D to cylinder code. Example: DLH0051 (Refer to page 62.)
- Available with fixed-nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.
- Removable retainer not available for these bore and rod combinations in the LH22 and LH32 mounting styles.

MilCad Cylinder Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

Recommended Pressure Rating

Bore	Pressure Rating
Ø	(psi)
1 ½	1500
2	1500
2 ½	1500*
31⁄4	1500
4	1000
5	1000*
6	750

*NOTE:

21/2" Bore, 5/8" Rod, Rating 1000 psi 5" Bore, 1" Rod, Rating 750 psi

Manipulators

Series LH

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

TABLE 2LH The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EE NPT	EE SAE	F	FB	G	J	K	R	TF	UF
1 ½	2	3⁄8	#6	3⁄8	5⁄16	1½	1	3⁄8	1.43	23⁄4	3¾
2	21/2	3⁄8	#6	3⁄8	3⁄8	1½	1	7⁄16	1.84	33⁄8	41⁄8
2 ½	3	3⁄8	#6	3⁄8	3⁄8	11/2	1	7⁄16	2.19	37⁄8	45⁄8
31⁄4	3¾	1⁄2	#10	5⁄8	7⁄16	13⁄4	11⁄4	1⁄2	2.76	411/16	51⁄2
4	41⁄2	1⁄2	#10	5⁄8	7⁄16	13⁄4	11⁄4	1⁄2	3.32	57/16	6¼
5	51⁄2	1⁄2	#10	5⁄8	9⁄16	13⁄4	11⁄4	9⁄16	4.10	65⁄8	75⁄8
6	61⁄2	3⁄4	#12	3⁄4	9⁄16	2	11⁄2	9⁄16	4.88	75⁄8	85⁄8

www.milwaukeecylinder.com

Series LH, Side Mount and Lug Mount

For Package and Mounting Dimension see Tables 1LH and 2LH.

SIDE OR LUG MOUNTED CYLINDERS

The side or lug mounted cylinder provides a fairly rigid mount. These types of cylinders can tolerate a slight amount of misalignment when the cylinder is at full stroke, but as the piston moves toward the blind end, the tolerance for misalignment decreases. It is important to note that if the cylinder is used properly (without misalignment), the mounting bolts are either in simple shear or tension without any compound stresses.

TAPPED HOLES IN CAPS FLUSH MOUNTING

Not Available With Removable Retainers.

CENTERLINE LUG MOUNTING

 $\overline{\mathbb{Q}}$

TS

US

See Table 3 (Inside Cover)

SB 4 HOLES

ST

2 <u>E</u> - .004 2 - .000

SW

SW

Rod End Style

MM

W

E

sw

+ F - G - +

-xs

-SU-

ZB + STROKE

LB + STROKE

- SS + STROKE

P + STROKE

EE

-13

* I - K

SU

-sw

MODEL LH51 NFPA STYLE MS3

Series MH

The dimensions given on this table are affected by the **TABLE 1LH** piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	LB	Р	SE	SN	SS ■	۷	W	XE	XS	ХТ	Y	ZB	ZE
1½	5⁄8	LH0051	4	01/	E1 /	01/	07/	1⁄4	5⁄8	5¾	1%	1 ¹⁵ ⁄16	1 ¹⁵ ⁄16	5	5¾
1 72	•1*	LH0052	4	21⁄4	51⁄2	21⁄4	21/8	1⁄2	1	5¾	13⁄4	25/16	25/16	53/8	6
	5⁄8	LH0510						1⁄4	5⁄8	5%16	13⁄8	1 ¹⁵ ⁄16	1 ¹⁵ ⁄16	51/16	51/8
2	† 1*	LH0511	4	21⁄4	51/8	21⁄4	21/8	1⁄2	1	5 ¹⁵ /16	13⁄4	25/16	25/16	57/16	6¼
	•1¾*	LH0512						5⁄8	1 1⁄4	63⁄16	2	2%16	2%16	5 ¹¹ /16	6½
	5⁄8	LH0520						1⁄4	5⁄8	5 ¹³ ⁄16	13⁄8	1 ¹⁵ ⁄16	1 ¹⁵ ⁄16	53/16	61⁄8
2 ½	1	LH0521	41⁄8	23/8	6¼	23⁄8	3	1⁄2	1	63⁄16	1¾	25/16	25/16	5%16	6½
L /2	†1 ¾*	LH0522	T /0	270	0/4	270	0	5⁄8	1 ¼	67⁄16	2	2%16	2%16	5 ¹³ ⁄16	6¾
	•1¾*	LH0523						3⁄4	11⁄2	611/16	21⁄4	213/16	213/16	61/16	7
	1	LH0530						1⁄4	3⁄4	6½	11⁄/8	27/16	27/16	61⁄8	61/8
3¼	13⁄8	LH0531	41/8	25⁄8	65⁄8	25⁄8	3¼	3⁄8	1	6¾	21⁄8	211/16	211/16	63⁄8	71⁄8
3 1/4	13⁄4*	LH0532	T /0	2/8	078	2/8	074	1⁄2	1 ¼	7	23⁄8	2 ¹⁵ /16	2 ¹⁵ ⁄16	65⁄8	73⁄8
	2*	LH0533						1⁄2	13⁄8	71⁄8	21⁄2	31/16	31⁄16	6¾	71⁄2
	1	LH0540						1⁄4	3⁄4	65⁄8	11 %	21/16	27/16	61⁄8	7
	13⁄8	LH0541						3⁄8	1	61/8	21⁄8	211/16	211/16	63⁄8	71⁄4
4	13⁄4	LH0542	41⁄8	25⁄8	61/8	25⁄8	3¼	1⁄2	1 ¼	71⁄8	23⁄8	215/16	2 ¹⁵ ⁄16	65⁄8	71⁄2
	2	LH0543						1⁄2	1¾	71⁄4	21⁄2	31⁄16	31⁄16	6¾	75⁄8
	21⁄2*	LH0544						5⁄8	1%	71⁄2	23⁄4	35⁄16	35⁄16	7	71/8
	1	LH0550						1⁄4	3⁄4	6 ¹⁵ ⁄16	21/16	21/16	27/16	67/16	71/16
	13⁄8	LH0551						3⁄8	1	73⁄16	25⁄16	211/16	211/16	611/16	711/16
	13⁄4	LH0552	=1/	07/				1⁄2	11⁄4	71/16	2%16	2 ¹⁵ /16	2 ¹⁵ ⁄16	615/16	7 ¹⁵ ⁄16
5	2	LH0553	51⁄8	21/8	71⁄4	21⁄8	31⁄8	1⁄2	13⁄8	7%16	211/16	31/16	31/16	71/16	81⁄16
	21⁄2	LH0554						5⁄8	1%	7 ¹³ ⁄16	2 ¹⁵ ⁄16	35⁄16	35⁄16	75⁄16	85⁄16
	3	LH0555						5⁄8	1%	7 ¹³ ⁄16	2 ¹⁵ ⁄16	35⁄16	35⁄16	75⁄16	85⁄16
	31⁄2*	LH0556						5⁄8	1%	7 ¹³ ⁄16	2 ¹⁵ /16	35⁄16	35⁄16	75⁄16	85/16
	13⁄8	LH0560						1⁄4	7⁄8	75⁄8	25⁄16	213/16	2 ¹³ ⁄16	73⁄16	81⁄8
	13⁄4	LH0561						3⁄8	11⁄8	71/8	2%16	31/16	31/16	71/16	83⁄8
	2	LH0562	F 2/	01/		01/	05/	3⁄8	11⁄4	8	211/16	33⁄16	33⁄16	7%16	81⁄2
6	21⁄2	LH0563	5¾	31⁄8	7¾	31⁄8	35⁄8	1⁄2	11⁄2	81⁄4	2 ¹⁵ ⁄16	37⁄16	37⁄16	7 ¹³ ⁄16	8¾
	3	LH0564						1⁄2	1½	81⁄4	2 ¹⁵ ⁄16	37⁄16	37⁄16	7 ¹³ ⁄16	8¾
	31⁄2	LH0565						1⁄2	1½	81⁄4	2 ¹⁵ ⁄16	37⁄16	37⁄16	7 ¹³ ⁄16	8¾
	4*	LH0566						1⁄2	1½	81⁄4	215/16	37⁄16	37⁄16	7 ¹³ ⁄16	8¾

HOW TO ORDER

For ordering information refer to Page 68.

NOTES:

- For double rod end cylinders, add prefix letter D to cylinder code. (Example: DLH0051 (Refer to page 62.)
- Tapped holes on LH41 rod end cap have a shallower TB depth in these sizes.
- † The standard rod eye or rod clevis will interfere with foot lugs on Model LH43. When these rod end accessories are required, use additional rod extension.
- ▲ For double rod end cylinders from 11/2" thru 6" bore, add $\frac{1}{2}$ + F to this dimension.
- For double rod end cylinders from 11/2" thru 6" bore, add 1/2 to this dimension.
- Available with fixed nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.

Rod End Styles and **Dimensions**

For rod end styles and dimensions see the Table 3

Page

Pressure Rating

(psi)

1500 1500

1500*

1500 1000

1000*

750

21/2" Bore, 5/8" Rod, Rating 1000 psi 5" Bore, 1" Rod, Rating 750 psi

in the inside cover of the

Recommended Pressure Rating

catalog.

Bore Ø

11/2

2 **2**½

31/4

4 5

6

*NOTE:

Series

도

Series A

Series

ΝN

TABLE 2LH The dimensions are constant regardless of rod

Bore Ø	E	EB	EE NPT	EE SAE	EL	EO	ET	F	G	J	К	NT	R	SB	ST	SU	SW	TB	TN	TS	US
11/2	2	⁵ ⁄16	3⁄8	#6	3⁄4	1⁄4	1⁄2	3⁄8	1½	1	3⁄8	1⁄4-20	1.43	7⁄16	1/2	¹⁵ ⁄16	3⁄8	3⁄8	5⁄8	2¾	3½
2	21⁄2	3⁄8	3⁄8	#6	¹⁵ ⁄16	5⁄16	19⁄32	3⁄8	1½	1	7⁄16	⁵⁄16 -18	1.84	7⁄16	1⁄2	¹⁵ ⁄16	3⁄8	9⁄16	7⁄8	3¼	4
2 ½	3	3⁄8	3⁄8	#6	1 ½16	5⁄16	3⁄4	3⁄8	1½	1	⁷ /16	3⁄8-16	2.19	⁷ /16	1⁄2	¹⁵ ⁄16	3⁄8	5⁄8	11⁄4	3¾	41⁄2
31⁄4	3¾	⁷ / ₁₆	1⁄2	#10	7⁄8	3⁄8	²⁹ / ₃₂	5⁄8	1¾	11⁄4	1⁄2	1⁄2-13	2.76	9⁄16	3⁄4	11⁄4	1⁄2	3⁄4	1½	4¾	53⁄4
4	41⁄2	⁷ / ₁₆	1⁄2	#10	1	3⁄8	11/8	5⁄8	13⁄4	11⁄4	1⁄2	1⁄2-13	3.32	9⁄16	3⁄4	11⁄4	1⁄2	1	21/16	51⁄2	61⁄2
5	51⁄2	9⁄16	1⁄2	#10	1 ½16	1⁄2	1 ¹¹ / ₃₂	5⁄8	13⁄4	11⁄4	9⁄16	5⁄8-11	4.10	¹³ ⁄16	1	1%16	11/16	1	211/16	61/8	81⁄4
6	6½	9⁄16	3⁄4	#12	1	1⁄2	1 %16	3⁄4	2	1½	9⁄16	3⁄4-10	4.88	¹³ ⁄16	1	1 %16	¹¹ ⁄16	11/8	31⁄4	71/8	91⁄4

www.milwaukeecylinder.com

Series LH, Pin and Trunnion Mount

For Package and Mounting Dimension see Tables 1LH and 2LH.

Series H

Series MH

Ξ

Series

PIN AND TRUNNION MOUNTED CYLINDERS

All pin and trunnion cylinders need a provision on both ends for pivoting. These types of cylinders are designed to carry shear loads and the trunnion and pivot pins should be carried by bearings that are rigidly held and closely fit for the entire length of the pin.

The dimensions given on this table are affected by the **TABLE 1LH** piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	LB	Р	V	W	ХС	XG	ХН	XJ	Y	ZB	ZC	ZH
	5⁄8	LH0051	4	21/4	1⁄4	5⁄8	53/8	1¾	5½	41⁄8	1 ¹⁵ ⁄16	5	51/8	6¼
1½	•1*	LH0052	4	274	1⁄2	1	53⁄4	21⁄8	51/8	41⁄2	25⁄16	53/8	6¼	65⁄8
	5⁄8	LH0510			1⁄4	5⁄8	53⁄8	13⁄4	51⁄2	41⁄8	1 ¹⁵ ⁄16	51/16	51/8	6¼
2	1*	LH0511	4	21⁄4	1⁄2	1	5¾	21⁄8	51/8	41⁄2	25⁄16	51/16	6¼	65⁄8
	•1¾*	LH0512			5⁄8	11⁄4	6	23⁄8	61⁄/8	4¾	2%16	5 ¹¹ /16	6½	61/8
	5⁄8	LH0520			1⁄4	5⁄8	51⁄2	13⁄4	5%	41⁄4	1 ¹⁵ ⁄16	53/16	6	63%8
2 ¹ / ₂	1	LH0521	41/8	23/8	1⁄2	1	51/8	21⁄8	6	45⁄8	25⁄16	5%16	63⁄8	6¾
2/2	13⁄8	LH0522	.,	2/0	5⁄8	11⁄4	61⁄8	23⁄8	6¼	41⁄8	2%16	5 ¹³ ⁄16	65⁄8	7
	•1¾*	LH0523			3⁄4	1½	63⁄8	25⁄8	63⁄8	51⁄8	2 ¹³ ⁄16	61/16	61/8	71⁄8
	1	LH0530			1⁄4	3⁄4	61/8	21⁄4	61/8	5	27/16	61⁄/8	75⁄8	81⁄8
3¼	13⁄8	LH0531	47⁄8	25/8	3⁄8	1	71⁄8	21⁄2	71⁄8	51⁄4	211/16	63%8	71⁄8	83⁄8
074	13⁄4	LH0532	.,	2/0	1⁄2	11⁄4	73⁄8	23⁄4	73⁄8	51⁄2	2 ¹⁵ ⁄16	65%8	81⁄8	85⁄8
	2*	LH0533			1⁄2	13⁄8	71⁄2	21⁄8	71⁄2	5%	31⁄16	6¾	81⁄4	8¾
	1	LH0540			1⁄4	3⁄4	61/8	21⁄4	61/8	5	27/16	61⁄/8	75⁄8	81⁄8
	13⁄8	LH0541			3⁄8	1	71⁄8	21⁄2	71⁄8	51⁄4	211/16	63%8	71/8	83⁄8
4	13⁄4	LH0542	41⁄8	25⁄8	1⁄2	11⁄4	73⁄8	23⁄4	73⁄8	51⁄2	2 ¹⁵ ⁄16	65%8	81⁄8	85⁄8
	2	LH0543			1⁄2	13⁄8	71⁄2	21⁄8	71⁄2	5%	31⁄16	6¾	81⁄4	8¾
	21⁄2*	LH0544			5⁄8	15⁄8	7¾	31⁄8	7¾	51⁄8	35⁄16	7	81⁄2	9
	1	LH0550			1⁄4	3⁄4	71⁄8	21⁄4	71⁄8	51⁄4	21/16	67/16	71⁄8	83⁄8
	13⁄8	LH0551			3⁄8	1	73⁄8	21⁄2	73⁄8	51⁄2	211/16	611/16	81⁄8	85⁄8
	13⁄4	LH0552			1⁄2	11⁄4	75⁄8	23⁄4	7%	5¾	2 ¹⁵ ⁄16	6 ¹⁵ ⁄16	83%8	81/8
5	2	LH0553	51⁄8	21⁄8	1⁄2	13⁄8	7¾	21⁄8	7¾	51⁄8	31⁄16	71⁄16	81⁄2	9
	21⁄2	LH0554			5⁄8	15⁄8	8	31⁄8	8	61⁄8	35⁄16	75⁄16	8¾	91⁄4
	3	LH0555			5⁄8	15⁄8	8	31⁄8	8	61⁄8	35⁄16	75⁄16	8¾	9¼
	31⁄2*	LH0556			5⁄8	15⁄8	8	31⁄8	8	61⁄8	35⁄16	75⁄16	8¾	9¼
	13⁄8	LH0560			1⁄4	7⁄8	81⁄8	25⁄8	81⁄4	51⁄8	2 ¹³ ⁄16	73⁄16	91⁄8	10
	13⁄4	LH0561			3⁄8	11⁄8	83⁄8	21⁄8	81⁄2	61⁄8	31⁄16	71/16	93⁄8	10¼
	2	LH0562			3⁄8	11⁄4	81⁄2	3	85⁄8	6¼	33⁄16	7%16	91⁄2	103⁄8
6	21⁄2	LH0563	5¾	31⁄8	1⁄2	11⁄2	8¾	31⁄4	81/8	61⁄2	37⁄16	7 ¹³ ⁄16	93⁄4	10%
	3	LH0564			1⁄2	11⁄2	8¾	31⁄4	81/8	61⁄2	37⁄16	7 ¹³ ⁄16	9¾	105⁄8
	31⁄2	LH0565			1⁄2	11⁄2	8¾	3¼	81/8	6½	37⁄16	7 ¹³ ⁄16	9¾	10%
	4	LH0566			1⁄2	1½	8¾	31⁄4	81/8	61⁄2	37⁄16	713/16	9¾	101/8

HOW TO ORDER

For ordering information refer to Page 68. NOTES:

- For double rod end cylinders, add prefix letter D to cylinder code. Example: DLH0051 (Refer to page 62.) Double rod ends are not available on LH61 or LH62 mount styles of Series LH cylinders.
- · Available with fixed nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.
- Removable retainer not available for these bore and rod combinations: LH61 and LH73/ LH74 mounting styles.

Rod End Styles and Dimensions **Rod End Styles** and Dimensions For rod end styles and dimensions see the Table 3 in the inside cover of the catalog. Page ii

Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

Pressure Rating

(psi)

1500 1500

1500*

1500

1000

1000*

750

21/2" Bore, 5/8" Rod, Rating 1000 psi

5" Bore, 1" Rod, Rating 750 psi 11174

Recommended Pressure Rating

Bore Ø

11/2

2 **2**¹/₂

31/4

4

5 6

*NOTE:

Series LH

Series

Þ

Series MN

Hyd-Pneu Devices

TABLE 2LH The dimensions are constant regardless of rod

																								LF	1/3			LF	174		
Bore	\mathbf{a}_{2}	BT	СВ	CD	CW	E	EE	EE	EW	F	G	H_2	J	κ	L	LH	LR	М	MR	Ν	TD	TL	ТΚ	ΤМ	UH	UM	ΤК	ΤМ	UH	UM	UT
Ø							NPT	SAE																							
1 ½	13°	3⁄4	3⁄4	1⁄2	1⁄2	2	3⁄8	#6	5⁄8	3⁄8	1½	¹³ ⁄16	1	3⁄8	3⁄4	5⁄8	5⁄8	1⁄2	²¹ / ₃₂	7⁄8	1	1	11⁄8	3½	23⁄8	5½	1 ¼	21⁄2	21⁄2	41⁄2	4
2	13°	3⁄4	3⁄4	1⁄2	1⁄2	21/2	3⁄8	#6	5⁄8	3⁄8	1½	¹³ ⁄16	1	7⁄16	3⁄4	5⁄8	5⁄8	1⁄2	11⁄16	7⁄8	1	1	11/8	4	27⁄8	6	1 ½	3	3	5	41/2
2 ½	13°	3⁄4	3⁄4	1⁄2	1⁄2	3	3⁄8	#6	5⁄8	3⁄8	1½	¹³ ⁄16	1	7⁄16	3⁄4	5⁄8	5⁄8	1⁄2	11⁄16	7⁄8	1	1	11⁄8	41⁄2	33⁄8	6½	1½	31⁄2	31⁄2	51⁄2	5
3 ¼	13°	3⁄4	11⁄4	3⁄4	5⁄8	3¾	1⁄2	#10	7⁄8	5⁄8	13⁄4	1 ¼	11⁄4	1⁄2	11⁄4	1	11/16	3⁄4	¹⁵ ⁄16	1 ¼	1	1	1 1⁄4	51⁄4	41⁄8	71⁄4	2	41⁄2	41⁄4	6½	5¾
4	13°	3⁄4	11⁄4	3⁄4	5⁄8	41⁄2	1⁄2	#10	7⁄8	5⁄8	1¾	11⁄4	11⁄4	1⁄2	11⁄4	1	1 ½16	3⁄4	¹⁵ ⁄16	1 ¼	1	1	1 1⁄4	6	5	8	2	51⁄4	5	71⁄4	61/2
5	13°	3⁄4	11⁄4	3⁄4	5⁄8	51/2	1⁄2	#10	7⁄8	5⁄8	1¾	11⁄4	11⁄4	9⁄16	11/4	1	11/16	3⁄4	¹⁵ ⁄16	11⁄4	1	1	11⁄4	7	6	9	2	6¼	6	81⁄4	71/2
6	12½°	1	11/2	1	3⁄4	61⁄2	3⁄4	#12	13⁄8	3⁄4	2	1 ¾	11/2	9⁄16	11/2	11/4	11⁄4	1	1 ³⁄16	15⁄8	13⁄8	13⁄8	11/2	81/2	7	111/4	21/2	75⁄8	7	10%	91⁄4

www.milwaukeecylinder.com

61

DOUBLE ROD END CYLINDERS

Milwaukee Cylinder's Double Rod End Cylinders are available with all the standard types of mountings, except LH61 and LH62 mount styles of Series LH cylinders.

To obtain dimensional information on a double rod end cylinder, first select the desired mounting style and refer to the corresponding single rod end cylinder model shown on the preceding pages. After you have determined all necessary dimensions from the previous page covering the desired mounting, turn back to this page. Supplement those dimensions with additional ones from the drawings below and the table at the right. These added dimensions differ from, or are in addition to, those shown on the preceding pages and provide the additional information needed to completely dimension a double rod end cylinder model.

On a double rod end cylinder where two different rod ends are required, or two different rod sizes are required, or cushions on one end are required, be sure to state clearly which rod is to go at which end of the cylinder. When two types of mounting styles are required, be sure to specify their relationship to the piston rods, if they are not the same.

DOUBLE ROD END CYLINDERS

Bore Ø	Rod MM	Cylinder Code	LD*	SE*	SS*	ZL	ZM
41/	5⁄8	DLH051	47/	03/	03/	51/8	61⁄8
1½	1	DLH052	41/8	63⁄8	33⁄8	6¼	67⁄8
	5⁄8	DLH510				5 ¹⁵ ⁄16	61⁄8
2	1	DLH511	47⁄8	63⁄4	33⁄8	65⁄16	61/8
	13⁄8	DLH512				6%16	73⁄8
	5⁄8	DLH520				61⁄16	6¼
2 ½	1	DLH521	5	71⁄8	31/2	67⁄16	7
L / 2	13⁄8	DLH522	Ŭ	170	072	611/16	71⁄2
	13⁄4	DLH523				615/16	8
	1	DLH530				71⁄4	71⁄2
3¼	13⁄8	DLH531	6	73⁄4	3¾	71⁄2	8
374	13⁄4	DLH532	Ũ	174	074	7¾	81⁄2
	2	DLH533				71/8	83⁄4
	1	DLH540				71⁄4	71⁄2
	13⁄8	DLH541				71⁄2	8
4	13⁄4	DLH542	6	8	3¾	7¾	81⁄2
	2	DLH543				71/8	8¾
	21⁄2	DLH544				81⁄8	91⁄4
	1	DLH550				7%16	7¾
	13⁄8	DLH551				7 ¹³ ⁄16	81⁄4
	13⁄4	DLH552				81⁄16	8¾
5	2	DLH553	6¼	83⁄8	35⁄8	8 ³ ⁄16	9
	21⁄2	DLH554					
	3	DLH555				87⁄16	91⁄2
	31⁄2	DLH556					
	13⁄8	DLH560				87⁄16	83⁄4
	13⁄4	DLH561	7			9 ¹¹ / ₁₆	91⁄4
	2	DLH562				813/16	91⁄2
6	21/2	DLH563		81/8	41⁄8		
	3	DLH564				91⁄16	10
	31⁄2	DLH565					
	4	DLH566					

* NOTE: These dimensions are to be substituted for the related mounting dimensions given on the preceding pages. All dimensions given on this table are plus stroke.

Series H

KEY MOUNT CYLINDERS

The Milwaukee Cylinder Key Mount retainer plate is a mounting option designed to add rugged stability to foot and side mount cylinders. The retainer plate is extended below the mounting surface of the cylinder. This extension may be fitted into a milled keyway in your mounting pad, eliminating the need for welded keys or locator pins.

HOW TO ORDER

For ordering information refer to Page 68.

0

V KEY MOUNT CYLINDERS

Bore Ø	E	F	FA	G	PA	PD
1½	2	3⁄8	.312/.310	11/2	3⁄16	1 ³ ⁄16
2	21/2	3⁄8	.312/.310	11/2	3⁄16	17⁄16
2 ½	3	3⁄8	.312/.310	11/2	3⁄16	1 ¹¹ /16
31⁄4	3¾	5⁄8	.562/.560	13⁄4	5⁄16	2 ³ ⁄16
4	41⁄2	5⁄8	.562/.560	13⁄4	5⁄16	2%16
5	51⁄2	5⁄8	.562/.560	13⁄4	5⁄16	31⁄16
6	61⁄2	3⁄4	.687/.684	2	3⁄8	35⁄8

MilCad Cylinder Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

milwaukee

Manipulators

Series LH

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

63

Series LH, Design Options

Oversize Port Welded Boss

SAE Straight Thread O-ring Port

Rod Boots

Metallic Rod Wipers

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

STANDARD DESIGN OPTIONS

Standard Ports

The *Milwaukee Cylinder* Series LH Cylinders are manufactured as standard, with the largest NPTF tapered thread ports that will fit in both the rod and blind ends of a given bore size. Upon request, extra ports can be provided on the sides of the end caps not occupied by mountings or cushion adjusters.

Oversize Ports

On most bore sizes, welded bosses may be provided for oversize NPTF ports. These bosses protrude from the sides of the end caps. For information as to the boss height in relation to your bore and port requirements, contact your local *Milwaukee Cylinder* Representative. Also, special heavier end caps can be provided so that oversize ports can be accommodated without the use of a welded boss.

Straight Thread Ports

On request, *Milwaukee Cylinder* will furnish an SAE straight thread O-Ring port on the Series LH Cylinders. In addition to the standard oversize NPTF ports, welded bosses may also be used for oversize SAE straight thread O-Ring ports. For further information on oversize SAE ports, contact the factory.

Note:

Flange and manifold style ports are available from *Milwaukee Cylinder*.

PORT SIZES

			SAE St	raight O-Ring Port
Ø	NPTF Port EE	NPTF Port EE ₁	EE ₂	SAE Standard Thread Series
1½	3⁄8	1/2	#6	^{9⁄16-18}
2	3⁄8	1/2	#6	^{9⁄16-18}
2 ½	3⁄8	1/2	#6	^{9⁄16-18}
3 ¼	1/2	3⁄4	#10	7⁄8-14
4	1/2	3⁄4	#10	7⁄8-14
5	1/2	3⁄4	#10	7⁄8-14
6	3⁄4	1	#12	11⁄16-12

Rod Boots

When cylinders are used in areas of high contamination or where contaminants have an air hardening property, the exposed piston rod should be covered with a rod boot to protect the rod bearing and seals. A rod boot is simply a collapsible cover. It is of sewn construction made from a neoprene coated fabric. The rod boots are impervious to oil, grease and water. They will operate effectively from 0° F to +200° F without cracking. For additional details on Rod Boots, please see page 186.

Metallic Rod Wipers

If requested, metallic rod wipers will be supplied in place of the standard synthetic rubber wiper. This type of seal is recommended for applications where contaminants would tend to cling to the rod and damage a standard synthetic rubber rod wiper.

Series LH

Series H

Special Design Options

DESIGN OPTIONS FOR SPECIAL CYLINDERS

Special Rod Ends

Modifications of standard or entirely special rod ends are available from *Milwaukee Cylinder*. When your requirements call for a special rod end style, your order should include a sketch if it is to be an entirely special rod end or note reference as to which letter dimensions you wish to have modified (see inside front cover).

Special Assemblies from Standard Parts

Each style of the various standard cylinder mountings is illustrated, using the commonly recognized cylinder dimensional symbols of the National Fluid Power Association. Each side of the end views are numbered to aid in communication when referring to the relationship between the ports and the mountings. When requesting information or placing an order that requires a dimension other than standard, always make reference to the given dimensional symbol in the catalog and then give your requirements.

Cushion Adjustment Locations

A ball check and a cushion adjustment needle are supplied as standard in position #2 on most models. The cushion needle and ball check are interchangeable as far as location and may be put in any side not occupied by a port or mounting.

Port Locations

Ports are located in position #1 as standard unless otherwise specified. By using the position numbers given with the end views in the dimensional data

section of this catalog, ports can be arranged in any one of four 90° positions in relation to the cylinder mounting. When ports are relocated on a cushioned cylinder, the cushion needle and ball check are automatically relocated to hold their relationship to the port as on a standard cylinder, unless otherwise specified at the time of the order.

Removable Trunnion Pins

Self-Locking Socket Head Capscrew

Removable trunnion pins are available on models LH71 and LH72. They can be used on all bore and rod combinations, except on the largest oversize rods offered with each bore size on all model LH71 cylinders.

Single-Acting Cylinders

The *Milwaukee Cylinder's* Series LH cylinders are designed for either single or double action. When used as a single acting cylinder, hydraulic power drives the piston in one direction, only relying on either the load or an external force to return the piston after the pressure is exhausted.

Single-Acting Spring Cylinders

Single-acting spring return cylinders normally have a spring inside of the cylinder to return the piston to its original position. The application load and friction conditions must be specified when placing an order to properly size the spring. Also specify whether the spring is to return or advance the piston. A spring return cylinder is designed with a stop tube to act as spring guide, which prevents binding of the cylinder due to misalignment of the spring. To accurately determine the cylinder length and mounting dimensions for your application, contact your local Milwaukee Cylinder representative or the factory.

Water Service Cylinders

Milwaukee Cylinder's Series LH Cylinders can be used with water as an operating fluid with some standard modifications to the types of material and the manufacturing processes used. These modifications will include, at some additional cost, bronze piston, nickel plated end caps, a hard chrome plated cylinder barrel and a chrome plated piston or stainless steel piston rod at extra cost. Due to the increased factors of corrosion, electrolysis and mineral deposits acting within a water fitted cylinder, Milwaukee Cylinder cannot warrant or make any guarantees other than a water service cylinder will be free of defects in workmanship or materials.

Proximity Switches

End of Stroke Limit Switches: We provide inductive proximity switches for end of stroke sensing. These noncontact switches detect the presence of the spud/cushion bushing. See page 185 for more information.

Combined Mountings

Standard mountings may be combined when specified by the customer. Some examples of this are:

These and other combinations can be readily made from standard parts. If you are unsure of a possible combination or if it will suit your particular needs, consult with your local *Milwaukee Cylinder* representative or contact the factory.

Adjustable Stroke Cylinders

When a cylinder application requires stroke adjustment,

Milwaukee Cylinder offers a number of designs, the most common of which is illustrated below. This particular design is externally adjustable, incorporating a threaded rod (of piston rod quality) with the standard hydraulic rod end multiple lip vee seal and bushing design. This provides a proven-effective high and low pressure seal, affording maximum sealing on the stroke adjustment rod.

Further information concerning design limitations, cushioning or alternate designs can be obtained by contacting the factory.

CAUTION!

Cylinders with removable trunnion pins will have a reduced pressure rating.

Power Units/Valves Design Guide

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Series LH, Stop Tubes

Series H

Series MH

Series LH

Stop Tubes For more information on Stop Tubes, see page 181 in the Design Engineer's Guide.

STOP TUBES

Stop tubes are used to maintain bearing pressure within acceptable limits and are recommended on cylinders with long strokes or poorly guided rods.

The stop tube is a spacer between the rod end cap and the piston, which provides separation between the piston and the rod bearing. This separation reduces the moment forces developed between the rod bearing and piston when the rod is extended.

To determine if stop tube is necessary for your cylinder requirements, you have to solve for "K" (refer to Figure 1). If your required cylinder has a "K" dimension in excess of 40 inches, stop tube is required. For each 10 inch increment or fraction thereof in excess of 40 inches, one inch of stop tube is recommended. When stop tube is required, the overall length of the cylinder will be increased by the length of the stop tube to be used.

To determine "K" (see to Figure 1) *Note: W = the rod stick out (refer to pages 54-63)

Cylinder #1, #4, #8 - see Figure 1 K = 4L = 4 (stroke + W^{*})

Cylinder #2 - see Figure 1

K = L = (CA or CE) + XG + StrokeNote: CA = rod eye dimension (back inside cover) CE = rod clevis dimension (back inside cover)

XG = mounting dimension page 60

Cylinder #3 - see Figure 1

 $K = L = W^* + Stroke$

Cylinder #5 - see Figure 1

 $K = L = (CA \text{ or } CE) + XC + (2 \times Stroke)$

Note:

CA = rod eye dimension (back inside cover) CE = rod clevis dimension (back inside cover)

XC = mounting dimension page 60

Cylinder #6 - see Figure 1

K = L = (CA or CE) + XJ + (2 x Stroke)Note:

CA = rod eye dimension (back inside cover) CE = rod clevis dimension (back inside cover) XJ = mounting dimension page 60

Cylinder #7 - see Figure 1

 $K = L/2 = (W^* + Stroke)/2$

When mounting long stroke cylinders, care should be taken to assure cylinder alignment over the entire length of stroke. The use of external guides or swivel bushings is recommended to reduce side load conditions and prolong the cylinder's service life.

Note: Stop tube length must be added to "K" factor before making final selection of rod size. This is primarily true in No. 5 long stroke applications.

The stop tube is located between the piston and the rod end cap. It limits the extended stroke of the cylinder, providing additional strength for less cost and reduced weight than the use of an oversize rod.

Cylinder Sizing

▼ TABLE 1 - VALUE OF "K" IN INCHES

Thrust Force				Piston Rod Diameter (in) 1% 1% 2 2½ 3 3½ 4 4½ 5 5½ 7												
(in-lbs)	5⁄8	1	1 3⁄8	1 ¾	2	2 ½	3	31⁄2	4	41/2	5	51⁄2	7			
400	35	84	134	-	-	-	-	-	-	-	-	-	-			
700	30	68	119	-	-	-	-	-	-	-	-	-	-			
1,000	26	60	105	156	190	-	-	-	-	-	-	-	-			
1,400	24	54	93	144	175	244	308	-	-	-	-	-	-			
1,800	23	48	84	127	160	230	294	366	-	-	-	-	-			
2,400	18	45	75	114	145	214	281	347	-	-	-	-	-			
3,200	16	40	68	103	131	196	262	329	398	-	-	-	-			
4,000	12	38	63	93	119	174	240	310	373	446	-	-	-			
5,000	9	36	60	87	112	163	225	289	359	426	-	-	-			
6,000	-	30	56	82	102	152	209	274	342	411	476	-	-			
8,000	-	25	51	76	93	136	186	244	310	375	448	-	-			
10,000	-	21	45	70	89	125	172	221	279	349	412	-	-			
12,000	-	17	41	64	85	117	155	210	270	326	388	455	-			
16,000	-	-	35	57	75	110	141	188	233	291	350	421	-			
20,000	-	-	28	52	66	103	136	173	218	270	325	385	-			
30,000	-	-	-	39	56	87	120	156	190	232	285	330	-			
40,000	-	-	-	24	43	75	108	142	177	210	248	293	-			
50,000	-	-	-	-	30	66	97	131	165	201	234	268	408			
60,000	-	-	-	-	-	57	88	119	154	190	226	256	384			
80,000	-	-	-	-	-	36	71	104	136	170	204	240	336			
100,000	-	-	-	-	-	-	56	91	120	154	199	224	324			
120,000	-	-	-	-	-	-	45	76	108	146	174	207	313			
140,000	-	-	-	-	-	-	-	64	98	129	162	194	301			
160,000	-	-	-	-	-	-	-	47	87	118	149	182	279			
200,000	-	-	-	-	-	-	-	-	65	98	131	160	260			
250,000	-	-	-	-	-	-	-	-	-	72	109	143	236			
300,000	-	-	-	-	-	-	-	-	-	-	85	120	212			
350,000	-	-	-	-	-	-	-	-	-	-	53	100	195			
400,000	-	-	-	-	-	-	-	-	-	-	-	72	182			
500,000	-	-	-	-	-	-	-	-	-	-	-	-	152			
600,000	-	-	-	-	-	-	-	-	-	-	-	-	114			
700,000	-	-	-	-	-	-	-	-	-	-	-	-	70			

▼ TABLE 2 - DEDUCTIONS FOR PULL STROKE FORCE & DISPLACEMENT

Piston Rod Ø	Piston Rod Area		Cylind	der Force	in Pound	ds for Var	ious Pres	sures		Displacement /in of Stroke
		100 psi	200 psi	250 psi	500 psi	750 psi	1000 psi	1250 psi	1500 psi	Gallons Oil Displaced
5⁄8	.307	31	61	77	154	230	307	384	461	.00133
1	.785	79	157	196	393	589	785	981	1178	.00340
1%	1.485	149	297	371	743	1114	1485	1856	2228	.00643
1 ¾	2.405	241	481	601	1203	1804	2405	3006	3608	.01041
2	3.142	314	628	786	1571	2357	3142	3928	4713	.01360
2 ½	4.909	491	982	1227	2455	3682	4909	6137	7364	.02125
3	7.069	707	1414	1767	3535	5302	7069	8836	10600	.03060
31/2	9.621	962	1924	2405	4811	7216	9621	12026	14430	.04165
4	12.57	1257	2514	3143	6285	9428	12570	15708	18860	.05442

▼ TABLE 3 - THRUST FORCE AND DISPLACEMENT

Cylinder Bore	Piston Area		Cylinde	er Force i	n Pounds	s for Vari	ous Press	sures		Displacement /in of Stroke
Ø		100 psi	200 psi	250 psi	500 psi	750 psi	1000 psi	1250 psi	1500 psi	Gallons Oil Displaced
1½	1.767	177	353	442	884	1325	1767	2209	2651	.00765
2	3.142	314	628	786	1571	2357	3142	3928	4713	.01360
21/2	4.909	491	982	1227	2455	3682	4909	6137	7364	.02125
31/4	8.296	830	1659	2074	4148	6222	8296	10370	12440	.03591
4	12.57	1257	2514	3143	6285	9428	12570	15708	18860	.05442
5	19.64	1964	3928	4910	9820	14730	19640	24544	29460	.08502
6	28.27	2827	5654	7068	14140	21200	28270	35342	42400	.12230

CYLINDER SIZING

The selection of the correct rod size is one of the most important factors in sizing a cylinder. The standard rod for each bore size that *Milwaukee Cylinder* manufactures is sufficient to handle the maximum tension force that the cylinder is capable of producing. It is primarily in compression and long stroke, high thrust applications that the column strength needs to be considered.

The following steps should be used to determine the proper rod size for an application: Series LH

Series

Series

MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

- Select the cylinder bore size required from Table
 3 based on the required cylinder thrust force and the operating line pressure at the cylinder.
- Determine the length between mounting points or "L" as shown on Figure 1, page 66.
- Based on the distance between mounting points ("L"), determine the value of "K" as shown on Figure 1, page 66.
- Using the thrust force and the developed "K" dimension, refer to Table 1 to select the proper rod size.
- If an oversized rod is required, re-check the overall length dimension ("K") in Step 1 and confirm your previous rod size selection.

To determine the cylinder pull (tension), stroke force, or displacement, deduct the force or displacement corresponding to the rod size in Table 2 from the force or displacement corresponding to the bore size shown in Table 3.

Series LH, Ordering Information

Feature	Description	Page Number	Code Number	Example
Double Rod End		62	D	$\underbrace{LH0542}_{-31} - \underbrace{1}_{4} - \underbrace{7}_{-7} \times \underbrace{14^{3/4}}_{-1}$
Cylinder Code	Refer to Table 1LH	55, 57, 59, and 61	-	
Mounting Style	Model Number Only	54, 56, 58, and 60	_	
Rod End Style	Code Number	inside front cover (ii)	_	←
Cushions	None Rod End Blind End Both Ends	- - -	1 2 3 4	
Cylinder Modifications	Special		S	Leave Blank
Seals	BUNA-N (-20° to 200° F) Viton (-15° to 350° F) Special		7 8 S	*If Special Describe Requirements
Stroke	Specify in Inches Including Fractional Requirements		_	

DUPLICATE CYLINDERS

Duplicate cylinders can be ordered by giving the serial number from the nameplate of the original cylinder. Factory records supply a quick, positive identification.

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders. *NOTE: Use "S" if any special design features or seals are required, describe in detail on your order. **EXAMPLE:** The code for a hydraulic cylinder 4" bore, rod end rectangular flange mounting, 1³/₄" rod, style No. 1 rod end, cushion both ends, standard seals with a 14³/₄" stroke is **LH0542-31-14-7x14**³/₄.

HOW TO ORDER

Series LH Cylinders

Standard Series LH Cylinders can be completely and accurately described by a model number. If your requirements are completely standard, select the alphanumeric codes from above that represent your cylinder and place them in the sequence indicated by the example. Use of the cylinder model number will eliminate untimely delays in handling your order.

General Order Data

- 1. Bore & Rod Size or the Cylinder Code: (refer to pages 54-63)
- 2. Mounting Style: (refer to page 54-63)
- Rod End Style: (refer to Inside Cover, page ii)
- 4. Cushion Requirements
- 5. Length of Stroke

Application Data

- 1. Port Requirements: refer to page 64.
- 2. Operating Fluid or Medium: Series LH Cylinders are equipped with seals for use with hydraulic oil. If other than a quality grade hydraulic oil will be used, specify the type of fluid in your order. See page 184 for more details.
- Temperature Range: Series LH Hydraulic Cylinders contain seals of Nitrile (Buna-N) suitable to -20° F to +200° F. Specify your operating temperature if your application does not fall within this temperature range.
- 4. Operating Pressure: Series LH Cylinders are rated for 750-1500 PSI. If your requirements are in excess of the rated pressure, describe your application in your order.
- 5. Accessories: Specify any accessories you require, using the part numbers given on the inside back cover.
- Special Requirements: If you require special seals, rod material, stop tube, center support, adjustable stroke or any other special requirements not covered, specify in detail on your order.

Series LH

Series H
Replacement Parts

REPLACEMENT SEALS OR CYLINDER PARTS

For replacement seals or cylinder parts, the serial number of your cylinder, the cylinder model number and the item number of the part you require (below) should appear on your order. To order entire seal kits for your cylinder, simply specify the serial number and the cylinder model number from page 68 on your request for service parts.

HOW TO ORDER COMPLETE SEAL KITS

When ordering complete seal kits, specify the following information on your order:

- The serial number of the cylinder the seals will be used on. 1.
- 2. The bore and rod size.
- 3. If the cylinder is cushioned.

To eliminate untimely delays in the handling of your order, please use the seal kit code as shown in the example below:

Example:

Buna-N Kit No. XXXXX-7-50

- cylinder code number (refer to pages 50-63)

Viton Kit No. XXXXX-8-50

- cylinder code number (refer to pages 50-63)

STANDARD PARTS LIST

ltem No.	Description
1	Piston Rod
2	Cylinder Barrel
3	Head End Cap
4	Cap End Cap
5	Rod Bushing
6	Retainer Plate
7	Piston
8	Cushion Plunger
9	Cushion Adj. Plunger
10	Ball Check Retainer
11	Ball Check
12	U-Cup Seal & Backup Washer for Piston
13	Rod Vee Ring Set
14	Rear Bearing Ring
15	Rod Wiper
16	O-Ring Seal for Ball Check Retainer
17	Wave Spring
18	Cylinder Barrel O-Ring
19	Tie Rod Flex Lock Nut
20	O-Ring Seal for Cushion Adj. Needle
21	Tie Rod
22	Self-Locking Cap Screw
23	O-Ring for Floating Cushion

Retainer Plate Cap Screw Torques

For Squa	are Retainers
Bore	Torque
Ø	(Ft-lbs)
1 ½	10
2	20
2 ½	20
31⁄4	30
4	30
5	50
6	50

Tie-rod Nut Torques

Nut Torque Specifications

Bore	Torque	
Ø	(Ft-Ibs)	
1 ½	8	
2	18	
2 ½	18	
3 ¼	35	
4	35	
5	60	
6	60	

When it is necessary to remove the tie-rod nuts on a cylinder, they must be reassembled to the torque specifications given above. To prevent the tie-rods from twisting when tightened, use a vice grip or locking clamp. Note that the torque specification is based on lubricated threads.

Series LH

Design Guide

INSTALLATION FOR SERIES LH

General Information

Cleanliness

The most important consideration when installing the cylinder. When cylinders are shipped from *Milwaukee Cylinder*, the ports are securely plugged with plastic plugs which should not be removed until the piping is to be installed. All piping should be thoroughly clean, to include the removal of all threading and flaring burrs or chips, before making the connection to the cylinder ports. One chip can cause premature failure of the cylinder or other hydraulic system components.

Alignment

Improper alignment will result in excessive cylinder wear. Check to assure rod alignment between the cylinder and its mating component on your machine in both the extended and retracted positions.

Environment

Cylinders operating in areas where there is weld splatter, fast drying chemicals, paint, excessive heat or other hazardous conditions, should have covers or shields to prevent damage to the rod and rod seals.

Bleeding

Air within the cylinder or system will cause erratic operation of the cylinder. Our cylinders generally do not require bleed ports if the cylinder ports are mounted in an upright position. Several full strokes of the cylinder will purge air from the cylinder into the circuit piping, where it can be bled off. Bleeder ports are available for applications where the cylinder is the high point of the circuit or where the cylinder does not complete a full stroke during its normal cycle.

MOUNTING RECOMMENDATIONS

Foot Mounted Cylinders

The use of high strength alloy steel mounting bolts 1/16" smaller than the hole size is recommended. After final alignment, foot mounted cylinders should be dowel pinned in place.

Trunnion Mounted Cylinders

Lubricated pillow blocks designed for close tolerance applications should be used. It is important to rigidly mount and align the pillow blocks so that the trunnion pins will not be subjected to any extreme bending moments The rod end should be pivoted with the pivot pin in line and parallel to the axis of the trunnion pins.

Flush Mount Cylinders

The use of high strength alloy steel mounting bolts is recommended. Shear keys should be used to reduce the stress on the mounting bolts created by the normal push and pull forces created by the cylinder cycle.

Flange Mount Cylinders

The controlled diameter rod bushing extension can be used as a pilot to locate the flange mount. Dowel pins should be used after the cylinder is mounted and aligned to prevent shifting.

Clevis Mount Cylinders

This type of cylinder must be pivoted at both ends and the pins must be in line and parallel to each other. After the cylinder is mounted, the customer should check to assure that the cylinder is free to swing through its working arc without interference from other machined parts.

STORAGE

Often times, cylinders are delivered before a customer is prepared to install them and must be stored for a period of time. When storage is required:

- Select an area indoors for storage, which has dry and non-corrosive atmosphere. Take caution to protect the cylinder from both internal and external corrosion.
- Cylinders to be stored should be kept in a vertical position (piston rod up) whenever possible.
- Port protector plugs should be kept in the cylinder ports until the time of installation.

Series H

Trouble Shooting / Maintenance

CYLINDER TROUBLE SHOOTING

1. External leakage

If leaking occurs between the end cap and barrel, check tie-rod torque. Do not over torque. If the torque is correct, then replace the barrel seal. When leakage occurs in the rod bushing area, replace the rod seals. If leakage continues or reoccurs in short period of operation, check items 2 thru 5, page 69.

2. Cylinder misalignment

Side load is a common problem which occurs when the cylinder application does not allow the piston rod to work in line during the extend and retract motions of the cylinder. Evidence of this is excessive seal failure, bushing wear or galling of the piston rod. Often, bending of the piston rod or complete failure (breakage) of the rod occurs.

3. Contamination on the piston rod

Dirt and other material is often picked up when the piston rod is extended. When the rod is retracted in an excessive dirty application, it often carries the dirt back into the rod seal cavity of the cylinder, causing damage to the seals. With a slight modification of the cylinder rod end, a rod boot can be added to protect the rod bushing and seals for most applications.

4. Bad mountings

Due to wear of pivot pins or mounting bolts working loose, a cylinder may have side load, even though the rod was in line when the cylinder was first installed. All cylinder mountings should be checked periodically.

5. Damaged piston rod

An extended piston rod can be damaged by the impact of a hard object which could burr the rod. If this occurs, the rod should be checked immediately to prevent seal damage.

6. Internal leakage

Inside the cylinder, leakage past the piston seals can cause sluggish movement or settling of the cylinder under load conditions. This occurs due to leakage of worn piston seals or rings.

7. Creeping cylinder

When a cylinder is stopped in midstroke and it creeps, check for internal leakage. Creeping can also be caused by a worn control valve and this should be checked, even if the cylinder is found to have internal leakage.

8. Erratic operation

When a cylinder is erratic or sluggish in operation, this may be caused by a number of problems. The most common cause of sluggish operation is air in the system. Internal leakage could also be a cause. If the system starts out sluggishly and, as it warms, speeds up, the oil may be of too high viscosity. The whole system should be checked for worn components if after these checks, the cylinder is still operating in a sluggish manner.

CYLINDER MAINTENANCE

Rod Seal Replacement

When changing rod seals, extend the piston rod 3" or more if possible, being sure to support the rod at all times. Remove the retainer plate screws (if tie-rod nuts have to be removed, refer to the nut torque specification on this page when reassembling the cylinder), retainer plate and outer bushing. Using an eye hook or thin screwdriver, pry the vees from the end cap cavity (if low pressure air is applied to the rod end port, this will help to force the vees from the cavity). The new set of vees should be assembled into the cavity separately and lubed with the soft vee in the center. Replace the rod wiper in the bushing and reassemble the cylinder.

Piston Seal Replacement

When changing piston seals, extend the piston rod 3" or more if possible, being sure to support the piston rod and the piston at all times. *Remove the tie-rod nuts, blind end cap, the barrel and then the piston seals. A light grease, compatible with the system fluid, should be used on the rings and block vee seals for smooth assembly. Install the block vee piston seals, scarf cutting on only the back-up washers. Then install the cast iron rings with the joints in opposite directions. To reassemble, start the piston into the tube, compressing the cast iron rings using twine or a ring compressor. When the piston block vee seal is to the edge of the barrel, use a thin rounded blade to start the lip of the block vee, making sure the entire lip is started before moving the piston further into the tube.

*Note: When a cylinder has been disassembled this far, the barrel seals should at least be inspected, if not replaced.

Barrel Seal Replacement

When replacing barrel seals, use the same method of disassembling the cylinder as used when replacing piston seals. The barrel seal consists of a backup washer and O-Ring, which is assembled on the first step of both ends of the tube, with the backup washer going on first. The outer diameter of the tube groove on the end caps must be checked for nicks or burrs and then greased. Position the end caps squarely on the tube (check to make sure port location is correct) and firmly force or tap the end cap over the tube until it bottoms. Check to make sure the O-Ring did not shear and then finish assembling the cylinder.

Nut Torque Specifications

Bore	Torque (Ft-lbs) 8 18 18 35					
Ø	(Ft-lbs)					
1 ½	8					
2	18					
2 ½	18					
3 ¼	35					
4	35					
5	60					
6	60					

When it is necessary to remove the tie-rod nuts on a cylinder, they must be reassembled to the torque specifications given above. To prevent the tie-rods from twisting when tightened, use a vice grip or locking clamp. Note that the torque specification is based on lubricated threads.

Design Guide

Series A

Milwaukee Cylinder Series A Pneumatic Cylinders are

built to perform on the toughest applications. This heavy-duty air cylinder is designed for 250 psi operation at temperatures between -20° F and +200° F, but can be used at higher temperatures with special seals. *Milwaukee Cylinder*'s advanced engineering and quality workmanship ensure you years of maintenance-free service life.

		Page
	TABLE 3 - Piston Rod End Styles	Inside Cover, page ii
General	Standard Specifications and Features	74
	Performance Tested Design Features	75
	Tie Rod Mount	76-79
	Flange Mount	80-81
	Solid End Cap Mount	82-83
Mounting Specifications	Side Mount and Lug Mount	84-87
	Pin Mount and Trunnion Mount	88-91
	Double Rod End Cylinders Key Mount	92 93
	Design Options	94-95
Additional	Stop Tubes / Cylinder Sizing	96-97
Information	Ordering Information / Replacement Parts	98-99
	Installation / Trouble Shooting / Maintenance	100-101
Accessories	Clevis / Brackets / Pins / Rod Eyes Dimensional Data	Inside Back Cover

Standard Specifications and Features

milwaukee

STANDARD SPECIFICATIONS

- Standard construction square head – tie rod design
- Nominal pressure 250 psi air service
- Standard fluid-filtered air
- Standard temperature -20° F to +200° F
- Standard bore sizes 1½" to 16"
- Standard piston rod diameters 5%" thru 51/2"
- Standard mounting styles 17 standard styles plus custom designs to suit your needs
- Strokes available in any practical stroke length
- Cushions available at either end or both ends of stroke
- Standard 7 rod end styles, plus specials designed to order
- Rod end style KK₂ is studded as standard for 5/8" and 1" diameter rods. Studded rod end style is available for all rod sizes.

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

STANDARD FEATURES

1. Removable Retainer Plate

The retainer plate and rod bushing are externally removable. On most models, total disassembly of the cylinder is not necessary. Four capscrews securely hold and lock the retainer plate in place.

2. Rod Bushing and Seals

The rod bushing is accurately machined from solid bearing bronze. It is piloted and retained in the end cap to provide positive rod support, and designed for maximum bearing area.

Buna-N seals are supplied as standard with *Milwaukee Cylinder* Series A cylinder. They are suitable for use with air or petroleum base fluids up to a temperature of 200°F. For high temperature or synthetic petroleum base fluids, seals of Viton and Teflon are also available.

3. Ports

Large NPTF cylinder ports are standard and can be located to customer requirements. SAE ports optional.

4. Piston Rod

The piston rod is of high strength steel, hardened and plated to resist scoring and corrosion, assuring maximum life.

5. Piston

An iron piston is precision machined from fine grained iron alloy. The piston is pilot fitted and threaded to the rod.

6. Cylinder Barrel

The barrel is honed and hard chrome plated. This provides superior sealing power, with the minimum of friction, to assure long seal life. Composite barrel is standard for 10" diameter and larger.

7. End Caps

End caps and mountings are of high quality steel, precision machined for accurate mounting.

8. Tie-Rods

The tie-rods are constructed from a high quality medium carbon steel. The threads are accurately rolled for rigid engagement of the nuts.

9. Cushions

Cushions are machined to close tolerance to provide positive, smooth deceleration at the end of stroke. On all bore sizes, we provide the longest cushion possible, based on the rod size and blind end caps. Longer cushions are available; for further information, consult factory.

10. Cushion Needle Adjustment and Ball Check

> The cushion needle adjustment valve and cushion-check ball retainer screw are specifically designed to provide full cushion adjustment.

Series A

Series H

Series MH

Performance Tested Design Features

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

Simple Maintenance...

Simple maintenance is reality with a *Milwaukee Cylinder*. The rod bushing or rod seals can be inspected or serviced by merely removing the cap screws and retainer plate on most models. Standard available shop tools can be used to remove the rod bushing and seals without disturbing the torque on the tie-rods, assuring performance quality with maintenance ease.

The *Milwaukee Cylinder* Series A cylinder uses two u-cup seals with back-up rings and a fine grained iron alloy piston. This proven piston seal design combines low friction and smooth break away with the near zero leakage of the u-cup seals.

Cushions...

The cushion is of a high grade alloy, precision machined and specially tapered to provide smooth deceleration of the piston at the end of stroke. The rod end cushion bushing is floated with an O-ring to compensate for minor misalignments during normal operation. This is to assure that our customers receive the total quality of performance that is designed into a *Milwaukee Cylinder* cylinder.

Piston Rod...

The piston rod is hardened, plated high strength steel, machined and processed to resist scoring and corrosion, assuring maximum life. *Milwaukee Cylinder* offers seven rod end styles as standard. **The style #2 rod end with two wrench flats is furnished as standard**, unless otherwise specified. Special rod ends and extra wrench flats are also available. They must be specified at the time of order, giving the dimensional requirements and the location of additional wrench flats. Series

Series A, Tie Rod Mount

milwaukee

For Package and Mounting Dimension see Tables 1A and 2A.

TIE ROD MOUNTED CYLINDERS

Tie-rod mounts are suited for many applications and are similar to flange mounts, but tie-rod mounts are not as rigid as the flange type of mounting. The best use of tie-rods extended on the blind end is in a thrust load application. When using tie-rods extended on the rod end, the best application is a tension load. When long strokes are required, the free end should be supported to prevent misalignment, sagging or possible binding of the cylinder.

TIE RODS EXTENDED BOTH ENDS

MODEL A10 NFPA STYLE MX1

MODEL A11

NFPA STYLE MX0

NO TIE ROD EXTENSION

TIE RODS EXTENDED ROD END

TIE RODS EXTENDED BLIND END

Series H

Series MH

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	W	Y	ZB	ZT
447	5⁄8	A0011	1 1⁄8	4	01/	1⁄4	5⁄8	1 ¹⁵ ⁄16	41⁄8	5%
1½	•1	A0012	11/2	4	21⁄4	1/2	1	25/16	51⁄4	6
	5⁄8	A0110	1 1⁄8			1⁄4	5⁄8	1 ¹⁵ ⁄16	4 ¹⁵ ⁄16	53⁄4
2	1	A0111	11/2	4	21⁄4	1/2	1	25/16	55/16	61⁄8
	•1%	A0112	2			5⁄8	11⁄4	2%16	5%16	63⁄8
	5⁄8	A0120	1 1⁄8			1⁄4	5⁄8	1 ¹⁵ ⁄16	5 ¹ /16	51/8
2 ½	1	A0121	11/2	41⁄8	41/8 23/8	1⁄2	1	25/16	57/16	6¼
L /2	13⁄8	A0122	2	170	270	5⁄8	11⁄4	2%16	5 ¹¹ /16	6½
	•1¾	A0123	23⁄8			3⁄4	1½	2 ¹³ ⁄16	5 ¹⁵ ⁄16	6¾
	1	A0130	11/2			1⁄4	3⁄4	27/16	6	7
31⁄4	13⁄8	A0131	2	47⁄8	25⁄8	3⁄8	1	211/16	6¼	71⁄4
J /4	13⁄4	A0132	23⁄8	.,	270	1⁄2	11⁄4	2 ¹⁵ /16	61⁄2	71⁄2
	2	A0133	25⁄8			1⁄2	1%	31⁄16	65⁄8	75⁄8
		A0140	11/2		25⁄8	1⁄4	3⁄4	27/16	6	7
	13⁄8	A0141	2	41⁄8		3⁄8	1	211/16	61⁄4	71⁄4
4	13⁄4	A0142	23⁄8			1⁄2	11⁄4	2 ¹⁵ /16	61⁄2	71⁄2
	2	A0143	25⁄8			1⁄2	1%	31/16	65⁄8	75⁄8
	21/2	A0144	31⁄8			5⁄8	15⁄8	35⁄16	67⁄8	71⁄8
	1	A1X50	11/2			1⁄4	3⁄4	27/16	65/16	7 ¹¹ /16
	13⁄8	A1X51	2			3⁄8	1	211/16	6%16	7 ¹⁵ ⁄16
	13⁄4	A1X52	23⁄8	F1 /	07/	1⁄2	11⁄4	2 ¹⁵ /16	613/16	8 ³ ⁄16
5	2	A0153	25⁄8	51⁄8	21⁄8	1⁄2	13⁄8	31/16	6 ¹⁵ ⁄16	85/16
	21⁄2	A0154	31⁄8			5⁄8	15⁄8	35⁄16	73⁄16	8%16
	3	A0155	3¾			5⁄8	15⁄8	35⁄16	73⁄16	8%16
	31⁄2	A0156	41⁄4			5⁄8	15⁄8	35⁄16	73⁄16	8%16
	13⁄8	A0160	2			1⁄4	7⁄8	2 ¹³ /16	71/16	87/16
	13⁄4	A0161	23⁄8			3⁄8	11/8	31⁄16	75⁄16	811/16
•	2	A0162	25⁄8	E3/	01/	3⁄8	11⁄4	33⁄16	71/16	813/16
6	21⁄2	A0163	31⁄8	5¾	31⁄8	1⁄2	1½	37⁄16	711/16	91⁄16
	3	A0164	3¾			1⁄2	1½	37⁄16	711/16	9 ¹ /16
	31⁄2	A0165	41⁄4			1⁄2	11⁄2	37⁄16	711/16	9 ¹ /16
	4	A0166	43⁄4			1⁄2	11⁄2	37⁄16	711/16	91/16

For bore diameter sizes 8" to 16" see next page.

HOW TO ORDER

For ordering information refer to page 98.

NOTES:

- For double rod end cylinders add prefix letter "D" to cylinder code. Example: DA0011. (Refer to page 92.)
- Available with fixed-nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.

to configure and download CAD files of your cylinders.

TABLE 2A

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	AA	BB	DD	E	EE	F	G	J	К
1 ½	2.02	1	1⁄4-28	2	3⁄8	3⁄8	1 ½	1	1⁄4
2	2.60	11⁄8	5⁄16-24	21/2	3⁄8	3⁄8	11/2	1	5⁄16
2 ½	3.10	1 1⁄8	5⁄16-24	3	3⁄8	3⁄8	1½	1	5⁄16
31⁄4	3.90	13⁄8	3⁄8-24	3¾	1/2	5⁄8	13⁄4	11⁄4	3⁄8
4	4.70	13⁄8	3∕8-24	41⁄2	1/2	5⁄8	13⁄4	11⁄4	3⁄8
5	5.80	1 ¹³ ⁄16	1⁄2-20	51⁄2	1/2	5⁄8	13⁄4	11⁄4	7⁄16
6	6.90	1 ¹³ ⁄16	1⁄2-20	61⁄2	3⁄4	3⁄4	2	11/2	7⁄16

www.milwaukeecylinder.com

77

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Power Units/Valves

Series A, Tie Rod Mount

milwaukee

BB

For Package and Mounting **Dimension see** Tables 1A and 2A.

TIE ROD MOUNTED CYLINDERS

The flange and tie-rod mounts are basically the same, except that the cylinder tie-rods are extended and used to mount the cylinder. To prevent misalignment, sagging or possible binding of the cylinder, when long strokes are required, the free end should be supported. The best use of tie-rods when extending on the blind end is in a thrust load application. When using tie-rods extended on the rod end, the best application is a tension load. Tie-rod mounts are suited for many applications, but it should be noted that they are not as rigid as the flange type of mounting.

TIE RODS EXTENDED BOTH ENDS

F

TT

SO

1

Ś

F

F

2

NFPA STYLE MX1

NFPA STYLE MX

TT. SQ. 1

G

w

<u>3</u>"

See Table 3 (Inside Cover) Rod End Style Ř

MM

DD

RR

ZT + STROKE ZB + STROKE

P + STROKE

LB + STROKE

ΕE

TIE RODS EXTENDED ROD END

Series H

MODEL A13

NFPA STYLE MX2

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore	Rod	Cylinder	В	LB	Р	TT	V	W	Y	ZB	ZT
Ø	MM	Code ♦									
	13⁄8	A0180	2			4	1⁄4	1%	2 ¹³ ⁄16	75⁄16	91/16
	13⁄4	A0181	23⁄8			4	3⁄8	11 %	31⁄16	7%16	95/16
	2	A0182	25⁄8			4	3⁄8	2	33⁄16	711/16	97/16
	21/2	A0183	31⁄8			4					
8	3	A0184	3¾	51⁄8	51/8 31/4	51⁄2					
	31⁄2	A0185	41⁄4		51⁄2						
	4	A0186	43⁄4			51⁄2	1⁄2	21⁄4	37⁄16	715/16	9 ¹¹ / ₁₆
	41⁄2	A0187	51⁄4			7					
	5	A0188	5¾			7					
	51⁄2	A0189	61⁄4			7					
	13⁄4	A1100	23⁄8			4	3⁄8	11⁄/8	31⁄8	815/16	1015/16
	2	A1101	25⁄8			4	3⁄8	2	31⁄4	91⁄16	11 ½16
	21⁄2	A1102	31⁄8			4					
	3	A1103	3¾			51⁄2					
10	31⁄2	A1104	41⁄4	63%8	41⁄8	51⁄2					
	4	A1105	43⁄4			51⁄2	1⁄2	21⁄4	31⁄2	95⁄16	115⁄16
	41⁄2	A1106	51⁄4			7					
	5	A1107	5¾			7					
	51⁄2	A1108	61⁄4			7					
	2	A1120	25⁄8			4	3⁄8	2	31⁄4	9%16	11%16
	21/2	A1121	31⁄8			4					
	3	A1122	3¾			51⁄2					
12	31⁄2	A1123	41⁄4	67⁄8	45%	51⁄2					
12	4	A1124	43⁄4	078	478	51⁄2	1⁄2	21⁄4	31⁄2	9 ¹³ /16	11 ¹³ ⁄16
	41⁄2	A1125	51⁄4			7					
	5	A1126	5¾			7					
	51⁄2	A1127	6¼			7					
	21⁄2	A1140	31⁄8			4					
	3	A1141	3¾			51⁄2					
	31⁄2	A1142	41⁄4			51⁄2					
14	4	A1143	43⁄4	81⁄8	51⁄2	51⁄2	1⁄2	21⁄4	3 ¹³ ⁄16	113⁄16	13%16
	41⁄2	A1144	51⁄4			7					
	5	A1145	53⁄4			7					
	51⁄2	A1146	6¼			7					
	21/2	A1160	31⁄8			4					
	3	A1161	33⁄4			51⁄2					
	31⁄2	A1162	41⁄4			51⁄2					
16	4	A1163	43⁄4	81⁄8	5%	51⁄2	1⁄2	21⁄4	3¾	113⁄16	13%16
	41⁄2	A1164	51⁄4			7					
	5	A1165	53⁄4			7					
	51⁄2	A1166	6¼			7					

HOW TO ORDER

For ordering information refer to page 98.

• For double rod end cylinders add prefix letter "D" to cylinder code. Example: DA0180. (Refer to page 92.)

-

For rod end styles and dimensions see the Table 3

Page/ ii

MilCad Cylinder Configurator

Visit milwaukeecylinder.com to configure and download

CAD files of your cylinders.

Series A

Series MN

Design Guide

TABLE 2A

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	AA	BB	DD	E	EE	G	J	К
8	9.10	25/16	⁵⁄s-18	81⁄2	3⁄4	2	1½	9⁄16
10	11.20	2 ¹¹ /16	3⁄4-16	105⁄8	1	21⁄4	2	¹¹ ⁄16
12	13.30	211/16	3⁄4-16	12¾	1	21⁄4	2	11/16
14	15.40	33⁄16	7⁄8-14	14¾	11⁄4	23⁄4	21⁄4	¹³ ⁄16
16	17.90	33⁄16	1∕8-14	17	11⁄4	2¾	21⁄4	¹³ ⁄16

Series A, Flange Mount

milwaukee

Bi

K

Þ

- J -

For Package and Mounting **Dimension see** Tables 1A and 2A.

FLANGE MOUNTED CYLINDERS

The flange mount is one of the strongest, most rigid methods of mounting. With this type of mount there is little allowance for misalignment, though when long strokes are required, the free end opposite the mounting should be supported to prevent sagging and possible binding of the cylinder. The best use of a blind end flange is in a thrust load application (rod in compression). Rod end flange mounts are best used in tension applications. When a less rigid mount can be used and the cylinder can be attached to a panel or bulkhead, an extended tie-rod mounting could be considered.

ROD SQUARE FLANGE MOUNTING

MODEL A22*

NFPA STYLE MF6

BLIND SQUARE FLANGE MOUNTING

0

ROD RECTANGULAR FLANGE MOUNTING

BLIND RECTANGULAR FLANGE MOUNTING

Series LH

Series H

Series MH

Flange Mount

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	В	LB	Р	V	w	Y	ZB	ZF
41/	5⁄8	A0011	11/8	4	21⁄4	1⁄4	5⁄8	1 ¹⁵ ⁄16	41⁄8	5
1½	•1*	A0012	11/2	4	2 1/4	1/2	1	25/16	51⁄4	53/8
	5⁄8	A0110	11/8			1⁄4	5⁄8	1 ¹⁵ ⁄16	4 ¹⁵ ⁄16	5
2	1	A0111	1½	4	21⁄4	1⁄2	1	25/16	55/16	53⁄8
	•1¾*	A0112	2			5⁄8	11⁄4	29/16	5%16	5%
	5⁄8	A0120	11⁄8			1⁄4	5⁄8	1 ¹⁵ ⁄16	5 ¹ ⁄16	51⁄/8
21/2	1	A0121	11/2	41⁄8	23/8	1⁄2	1	25⁄16	51/16	51⁄2
-/2	13⁄8	A0122	2	.,	270	5⁄8	11⁄4	2%16	5 ¹¹ /16	5¾
	•1¾*	MM Code \bullet 5% A0011 •1* A0012 5% A0110 1 A0111 •1% A0120 1 A0121 5% A0120 1 A0121 1% A0123 1 A0130 1% A0132 2* A0133 1 A0140 1% A0142 2 A0143 2½* A0144 1 A1x50 1% A1x51 1% A1x52 2 A0153 2½ A0154 3 A0155 3½* A0160 1¾ A0160 1¾ A0161 2 A0163 3 A0163	23⁄8			3⁄4	1½	2 ¹³ ⁄16	5 ¹⁵ ⁄16	6
	1	A0130	1½			1⁄4	3⁄4	27/16	6	6¼
31/4	13⁄8	A0131	2	47⁄8	25⁄8	3⁄8	1	211/16	6¼	6½
J /4	13⁄4	A0132	23⁄8	.,,,	270	1⁄2	11⁄4	2 ¹⁵ /16	61⁄2	6¾
	2*	A0133	25⁄8			1⁄2	13⁄8	31⁄16	65⁄8	61/8
	1	A0140	11/2			1⁄4	3⁄4	27/16	6	6¼
	13⁄8	A0141	2			3⁄8	1	211/16	61⁄4	6½
4	13⁄4	A0142	23⁄8	41/8	25⁄8	1⁄2	11⁄4	2 ¹⁵ /16	61⁄2	6¾
	2	A0143	25⁄8			1⁄2	13⁄8	31/16	65⁄8	61/8
	21/2*	A0144	31⁄8			5⁄8	15⁄8	35⁄16	61/8	71⁄8
	1	A1x50	1½			1⁄4	3⁄4	27/16	65/16	61⁄2
	13⁄8	A1x51	2			3⁄8	1	211/16	6%16	6¾
	2 ¹ / ₂ 1 ³ / ₈ •1 ³ / ₄ 1 1 ³ / ₆ 1 ³ / ₄ 2 [*] 1 1 ³ / ₈ 1 1 ³ / ₈ 1 ³ / ₄ 2 ¹ / ₂ * 2 ¹ / ₂ * 1 1 ³ / ₈ 1 ³ / ₄ 1 ³ / ₄ 1 ³ / ₈ 1 ³ / ₈ 1 ³ / ₄ 1 ³ / ₈ 1 ³ / ₄ 1 ³ / ₈ 1 ³ / ₈ 1 ³ / ₄ 1 ³ / ₈ 1 ³ / ₈	A1x52	23⁄8	F1 /	07/	1⁄2	11⁄4	2 ¹⁵ /16	6 ¹³ ⁄16	7
5	2	A0153	25⁄8	51/8	21⁄8	1⁄2	13⁄8	31/16	6 ¹⁵ ⁄16	71⁄8
		A0154	31⁄8			5⁄8	15⁄8	35⁄16	73⁄16	73⁄8
	3		3¾			5⁄8	15⁄8	35⁄16	73⁄16	73⁄8
	31⁄2*	A0156	41⁄4			5⁄8	15⁄8	35⁄16	73⁄16	73⁄8
	13⁄8		2			1⁄4	7⁄8	2 ¹³ /16	71/16	73⁄8
			23⁄8			3⁄8	11⁄8	31⁄16	75⁄16	75⁄8
	2		25⁄8	F 2/	01/	3⁄8	11⁄4	33⁄16	71/16	7¾
6	21/2	A0163	31⁄8	5¾	31⁄8	1⁄2	11⁄2	37⁄16	711/16	8
	3		3¾			1⁄2	1½	37⁄16	711/16	8
	31⁄2	A0165	41⁄4			1⁄2	1½	37⁄16	711/16	8
	4	A0166	43⁄4			1⁄2	1½	37⁄16	711/16	8

For bore diameter sizes 8" to 16" see next page.

HOW TO ORDER

For ordering information refer to Page 98.

NOTES:

- For double rod end cylinders add prefix letter "D" to cylinder code. Example: DA0011. (Refer to page 92.)
- Available with fixed-nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.
- * Removable retainer not available for these bore and rod combinations in the A22 and A32 mounting styles.

to configure and download CAD files of your cylinders.

TABLE 2A

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EE	F	FB	G	J	К	R	TF	UF
1½	2	3⁄8	3⁄8	^{5/} 16	1½	1	1⁄4	1.43	23⁄4	3%
2	21/2	3⁄8	3⁄8	3⁄8	11/2	1	5⁄16	1.84	33⁄8	41⁄8
2 ½	3	3⁄8	3⁄8	3⁄8	1½	1	5⁄16	2.19	31⁄8	45⁄8
31⁄4	33⁄4	1/2	5⁄8	7⁄16	13⁄4	11⁄4	3⁄8	2.76	411/16	51⁄2
4	41⁄2	1⁄2	5⁄8	7⁄16	13⁄4	11⁄4	3⁄8	3.32	51/16	6¼
5	51⁄2	1⁄2	5⁄8	9⁄16	13⁄4	11⁄4	7⁄16	4.10	65⁄8	75⁄8
6	6½	3⁄4	3⁄4	9⁄16	2	1½	7⁄16	4.88	7%	85⁄8

www.milwaukeecylinder.com

81

Power Units/Valves

Series A

Series

MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Series A, Solid End Cap Mount

1.

For Package and Mounting **Dimension see** Tables 1A and 2A.

SOLID ROD END CAP MOUNTED CYLINDERS

Milwaukee Cylinder's solid end cap mount is one of the strongest, most rigid methods of mounting. This type of rod end cap mounting is best in a tension application. A solid blind end cap mounting is best in a thrust application.

SOLID ROD END CAP SQUARE MOUNTING

MODEL A21 NFPA STYLE ME3

SOLID BLIND END CAP SQUARE MOUNTING

Series LH

Series H

Series MH

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore	Rod	Cylinder	В	LB	Р	TT	V	W	Y	ZB	ZJ
Ø	ММ	Code 🔶									
	13⁄8	A0180	2			4	1⁄4	15⁄8	213/16	75⁄16	6¾
	13⁄4	A0181	23⁄8			4	3⁄8	11 %	31⁄16	7%16	7
	2	A0182	25⁄8			4	3⁄8	2	33⁄16	711/16	71⁄8
	21⁄2	A0183	31⁄8			4					
8	3	A0184	3¾	51/8	31⁄4	51⁄2					
	31⁄2	A0185	41⁄4		51⁄2						
	4	A0186	43⁄4			51⁄2	1⁄2	21⁄4	37⁄16	7 ¹⁵ ⁄16	73⁄8
	41⁄2	A0187	51⁄4			7					
	5	A0188	5¾			7					
	51/2	A0189	61⁄4			7					
	13⁄4	A1100	23⁄8			4	3⁄8	11 1/8	31⁄8	8 ¹⁵ /16	81⁄4
	2	A1101	25⁄8			4	3⁄8	2	31⁄4	91⁄16	83⁄8
	21⁄2	A1102	31⁄8			4					
	3	A1103	3¾	-	44.4	51⁄2				95⁄16	
10	31⁄2	A1104	41⁄4	63%8	41⁄8	51⁄2		21⁄4	31⁄2		
	4	A1105	43⁄4			51⁄2	1⁄2				85⁄8
	41⁄2	A1106	51⁄4			7					
	5	A1107	5¾			7					
	51⁄2	A1108	61⁄4			7					
	2	A1120	25⁄8			4	3⁄8	2	31⁄4	9%16	81/8
	21⁄2	A1121	31⁄8			4				9 ¹³ ⁄16	
	3	A1122	3¾			51⁄2					
12	31⁄2	A1123	41⁄4	61/8	45%	51⁄2		21⁄4			
12	4	A1124	43⁄4	078	478	51⁄2	1⁄2		31⁄2		91⁄8
	41⁄2	A1125	51⁄4			7					
	5	A1126	5¾			7					
	51⁄2	A1127	61⁄4			7					
	21/2	A1140	31⁄8			4					
	3	A1141	3¾			51⁄2					
	31⁄2	A1142	41⁄4			51⁄2					
14	4	A1143	43⁄4	81⁄8	51⁄2	51⁄2	1⁄2	21⁄4	3 ¹³ ⁄16	113⁄16	103⁄8
	41⁄2	A1144	51⁄4			7					
	5	A1145	5¾			7					
	51⁄2	A1146	61⁄4			7					
	21⁄2	A1160	31⁄8			4					
	3	A1161	3¾			51⁄2					
	31⁄2	A1162	41⁄4	81⁄8 55⁄		51⁄2					
16	4	A1163	43⁄4		5%	51⁄2	1⁄2	21⁄4	3¾	113⁄16	10%
	41⁄2	A1164	51⁄4			7					
	5	A1165	5¾			7					
	51⁄2	A1166	6¼]		7					

HOW TO ORDER

For ordering information refer to page 98.

• For double rod end cylinders add prefix letter "D" to cylinder code. Example: DA0180. (Refer to page 92.)

Visit milwaukeecylinder.com to configure and download

CAD files of your cylinders.

-

and dimensions

Page/

MilCad Cylinder Configurator

Hyd-Pneu Devices

ii

Series A

Series MN

Cyl Accessories

Design Guide

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EB	EE	R	G	J	К	R	TE
8	81⁄2	¹¹ ⁄16	3⁄4	-	2	1½	9⁄16	6.44	7.57
10	10%	¹³ ⁄16	1	-	21⁄4	2	¹¹ ⁄16	7.92	9.40
12	12¾	¹³ ⁄16	1	-	21⁄4	2	11/16	9.40	11.10
14	14¾	¹⁵ ⁄16	11⁄4	-	23⁄4	21⁄4	¹³ ⁄16	10.90	12.87
16	17	1 ½16	11⁄4	-	23⁄4	21⁄4	¹³ ⁄16	12.65	14.85

www.milwaukeecylinder.com

Series A, Side Mount and Lug Mount

For Package and Mounting Dimension see Tables 1A and 2A.

SIDE OR LUG MOUNTED CYLINDERS

The side or lug mounted cylinder provides a fairly rigid mount. These types of cylinders can tolerate a slight amount of misalignment when the cylinder is at full stroke, but as the piston moves toward the blind end, the tolerance for misalignment decreases. It is important to note that if the cylinder is used properly (without misalignment), the mounting bolts are either in simple shear or tension without any compound stresses.

TAPPED HOLES IN CAPS FLUSH MOUNTING

MODEL A41 NFPA STYLE MS4

MODEL A51 NFPA STYLE MS3

CENTERLINE LUG MOUNTING

84

Series LH

Series H

TABLE 1A

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	LB	Р	SE	SN	SS ∎	V	w	XE	XS	ХТ	Y	ZB	ZE
1½	5⁄8	A0011	4	01/	F1 (01/	07/	1⁄4	5⁄8	5¾	1%	1 ¹⁵ ⁄16	1 ¹⁵ ⁄16	41⁄8	53/8
1 72	•1*	A0012	4	21⁄4	51⁄2	21⁄4	21/8	1⁄2	1	5¾	13⁄4	25/16	25/16	51⁄4	6
	5⁄8	A0110						1⁄4	5⁄8	5%16	13⁄8	1 ¹⁵ ⁄16	1 ¹⁵ ⁄16	415/16	51⁄8
2	†1 *	A0111	4	21⁄4	51⁄8	21⁄4	21⁄8	1⁄2	1	5 ¹⁵ ⁄16	1¾	25⁄16	25⁄16	55⁄16	6¼
	•1¾*	A0112						5⁄8	11⁄4	63⁄16	2	2%16	2%16	5%16	6½
	5⁄8	A0120						1⁄4	5⁄8	5 ¹³ ⁄16	13⁄8	1 ¹⁵ ⁄16	1 ¹⁵ ⁄16	51/16	61⁄8
2 ½	1	A0121	41⁄8	23⁄8	6¼	23/8	3	1⁄2	1	63⁄16	1¾	25⁄16	25⁄16	51/16	6½
/	†1 ¾*	A0122	170	270	07.	-/0		5⁄8	11⁄4	67/16	2	2%16	2%16	511/16	6¾
	•1¾*	A0123						3⁄4	11⁄2	611/16	21⁄4	213/16	213/16	615/16	7
	1	A0130						1⁄4	3⁄4	6½	11⁄8	21/16	21/16	6	61/8
3¼	13⁄8	A0131	41/8	2%	65⁄8	25⁄8	3¼	3⁄8	1	6¾	21⁄8	211/16	211/16	6¼	71⁄8
J /4	1 ¾*	A0132	.,.	270	078	270	0/4	1⁄2	11⁄4	7	23⁄8	215/16	2 ¹⁵ /16	6½	73⁄8
	2*	A0133						1⁄2	13⁄8	71⁄8	21⁄2	31⁄16	31/16	65⁄8	7½
	1	A0140						1⁄4	3⁄4	65⁄8	11⁄8	21/16	27/16	6	7
	13⁄8	A0141						3⁄8	1	61/8	21⁄8	2 ¹¹ /16	211/16	6¼	71⁄4
4	1 ¾	A0142	41⁄8	25⁄8	61/8	25⁄8	31⁄4	1⁄2	11⁄4	71⁄8	23⁄8	215/16	2 ¹⁵ /16	6½	7½
	2	A0143						1⁄2	1%	71⁄4	21⁄2	31⁄16	31/16	65⁄8	7%
	21⁄2*	A0144						5⁄8	15⁄8	71⁄2	23⁄4	35⁄16	35⁄16	61/8	71⁄8
	1	A1x50						1⁄4	3⁄4	6 ¹⁵ ⁄16	21/16	21/16	27/16	65⁄16	71/16
	13⁄8	A1x51						3⁄8	1	73⁄16	25/16	211/16	211/16	6%16	711/16
_	13⁄4	A1x52	F 1/	07/		07/	01/	1⁄2	11⁄4	71/16	2%16	2 ¹⁵ ⁄16	2 ¹⁵ ⁄16	613/16	7 ¹⁵ /16
5	2	A0153	51⁄8	21⁄8	7¼	21/8	31⁄8	1⁄2	1%	7%16	211/16	31/16	31/16	6 ¹⁵ ⁄16	81/16
	21⁄2	A0154						5⁄8	1%	7 ¹³ ⁄16	2 ¹⁵ /16	35⁄16	35⁄16	73⁄16	85/16
	3	A0155						5⁄8	15⁄8	713/16	2 ¹⁵ ⁄16	35⁄16	35⁄16	73⁄16	85⁄16
	31⁄2*	A0156						5⁄8	1%	7 ¹³ ⁄16	2 ¹⁵ /16	35⁄16	35⁄16	73⁄16	85/16
	13⁄8	A0160						1⁄4	7⁄8	75⁄8	25/16	2 ¹³ ⁄16	2 ¹³ ⁄16	71/16	81⁄8
	13⁄4	A0161						3⁄8	11/8	71/8	2%16	31⁄16	31⁄16	75⁄16	83⁄8
	2	A0162	E3/	01/	72/	01/	05/	3⁄8	11⁄4	8	211/16	33⁄16	33⁄16	71/16	81⁄2
6	21⁄2	A0163	5¾	31⁄8	7¾	31⁄8	35⁄8	1⁄2	1½	81⁄4	2 ¹⁵ /16	31/16	37⁄16	711/16	8¾
	3	A0164						1⁄2	1½	81⁄4	2 ¹⁵ /16	31/16	37⁄16	7 ¹¹ /16	8¾
	31⁄2	A0165						1⁄2	1½	81⁄4	2 ¹⁵ /16	37/16	37/16	711/16	8¾
	4*	A0166						1⁄2	1½	81⁄4	215/16	31/16	37⁄16	711/16	8¾

For bore diameter sizes 8" to 16" see next page.

HOW TO ORDER

For ordering information refer to Page 98.

NOTES:

- For double rod end cylinders add prefix letter "D" to cylinder code. Example: DA0011. (Refer to page 92.)
- * Tapped holes on A41 rod end cap have a shallower TB depth in these sizes.
- † The standard rod eye or rod clevis will interfere with foot lugs on Model A43. When these rod end accessories are required, use additional rod extension.
- ▲ For double rod end cylinders from 11/2" thru 6" bore, add $\frac{1}{2}$ + F to this dimension.
- For double rod end cylinders from 11/2" thru 6" bore, add 1/2 to this dimension.
- Available with fixed nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.

Rod E
and D
For ro
 and di
see th

catalog.

End Styles Dimensions d end styles imensions e Table 3 in the inside cover of the

ii

Page

Series

⊳

Ser

ies

N

Hyd-Pneu Devices

TABLE 2A

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EB	EE	EL	EO	ET	F	G	J	к	NT	R	SB	ST	SU	SW	ТВ	TN	TS	US
1½	2	⁵ ⁄16	3⁄8	3⁄4	1⁄4	1⁄2	3⁄8	1½	1	1⁄4	1⁄4-20	1.43	⁷ ⁄16	1⁄2	¹⁵ ⁄16	3⁄8	3⁄8	5⁄8	23⁄4	3½
2	21/2	3⁄8	3⁄8	15/16	5⁄16	19/32	3⁄8	1½	1	5⁄16	5⁄16-18	1.84	7⁄16	1/2	¹⁵ ⁄16	3⁄8	^{9/} 16	7⁄8	31⁄4	4
2 ½	3	3⁄8	3⁄8	11/16	5⁄16	3⁄4	3⁄8	1½	1	⁵ ⁄16	3⁄8-16	2.19	7⁄16	1⁄2	¹⁵ ⁄16	3⁄8	5⁄8	11⁄4	3¾	41⁄2
31⁄4	3¾	⁷ /16	1/2	7⁄8	3⁄8	²⁹ / ₃₂	5⁄8	13⁄4	11⁄4	3⁄8	1⁄2-13	2.76	9⁄16	3⁄4	11⁄4	1/2	3⁄4	11/2	43⁄4	53⁄4
4	41⁄2	⁷ ⁄16	1⁄2	1	3⁄8	11/8	5⁄8	1¾	11⁄4	3⁄8	1⁄2-13	3.32	9⁄16	3⁄4	11⁄4	1⁄2	1	21/16	5½	6½
5	51⁄2	9⁄16	1/2	1 ½16	1⁄2	1 ¹¹ / ₃₂	5⁄8	13⁄4	11⁄4	⁷ /16	5⁄8-11	4.10	¹³ ⁄16	1	1%16	¹¹ ⁄16	1	211/16	61/8	81⁄4
6	6½	9⁄16	3⁄4	1	1⁄2	1%16	3⁄4	2	1½	⁷ ⁄16	3⁄4-10	4.88	¹³ ⁄16	1	1%16	¹¹ ⁄16	11⁄8	31⁄4	71⁄8	9¼

www.milwaukeecylinder.com

Series A, Side Mount and Lug Mount

-EO

►EL

SE + STROKE

For Package and Mounting Dimension see Tables 1A and 2A.

SIDE OR LUG MOUNTED CYLINDERS

The side or lug mounted cylinder provides a fairly rigid mount. These types of cylinders can tolerate a slight amount of misalignment when the cylinder is at full stroke, but as the piston moves toward the blind end, the tolerance for misalignment decreases. It is important to note that if the cylinder is used properly (without misalignment), the mounting bolts are either in simple shear or tension without any compound stresses.

TAPPED HOLES IN CAPS FLUSH MOUNTING

MODEL A41 NFPA STYLE MS4

SIDE LUG MOUNTING

MODEL A42 NFPA STYLE MS2

FOOT MOUNTING ZE + STROKE XE + STROKE E ZB + STROKE TT SQ. P + STROKE W EE 1 <u>3</u>1 See Table 3 (Inside Cover) Rod End Style E4 <u>E</u> 2 .006 - .000 мм ET -FR 3 -J≁ -EO · -+ G --F 4 HOLES LB + STROKE FI

MODEL A43 NFPA STYLE MS7

CENTERLINE LUG MOUNTING

MODEL A51 NFPA STYLE MS3

Series H

Series A

TABLE 1A

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	LB	Ρ	SE	SN	SS	TT	v	w	XE	XS	хт	Y	ZB	ZE
	1¾	A0180						4	1⁄4	15⁄8	71/8	25/16	2 ¹³ /16	2 ¹³ /16	75⁄16	81⁄2
	13⁄4	A0181						4	3⁄8	11 %	81/8	29/16	31/16	3 ¹ /16	7%16	8¾
	2	A0182						4	3⁄8	2	8¼	211/16	3 ³ ⁄16	3 ¾16	711/16	81/8
	21/2	A0183						4								
8	3*	A0184	51⁄8	3¼	73⁄8	3¼	3¾	5½								
	31⁄2*	A0185						51⁄2								
	4*	A0186						51⁄2	1⁄2	21⁄4	81⁄2	2 ¹⁵ ⁄16	37⁄16	37⁄16	7 ^{15/} 16	91⁄8
	41⁄2*	A0187						7								
	5*	A0188						7								
	51⁄2*	A0189						7								
	13⁄4	A1100						4	3⁄8	11⁄/8	9%16	2¾	31⁄8	31⁄8	8 ¹⁵ ⁄16	10 ¾16
	2	A1101						4	3⁄8	2	911/16	21⁄8	3¼	3¼	9 ¹ / ₁₆	10 5⁄16
	21⁄2	A1102						4								
	3*	A1103	03/	41/	_	417	45/	5½								
10	31⁄2*	A1104	63⁄8	41⁄8	9	41⁄8	45⁄8	51⁄2								
	4*	A1105						51⁄2	1⁄2	21⁄4	9 ¹⁵ /16	31⁄8	31⁄2	31⁄2	95/16	10%16
	41⁄2*	A1106						7								
	5*	A1107						7								
	51⁄2*	A1108						7								
	2	A1120						4	3⁄8	2	103/16	21⁄8	3¼	3¼	9%16	10 ¹³ ⁄16
	21⁄2	A1121						4								
	3	A1122						51⁄2								
12	31⁄2	A1123	61/8	45⁄8	91⁄2	45%	51⁄8	51⁄2								
12	4	A1124	0,0	.,.	0/2	.,.	0,0	51⁄2	1⁄2	21⁄4	107/16	31⁄8	31⁄2	31⁄2	9 ¹³ /16	111/16
	41⁄2*	A1125						7								
	5*	A1126						7								
	51/2*	A1127						7								
	21/2*	A1140						4								
	3*	A1141						51/2								
	31⁄2*	A1142	01/	F1 /	4.4.17	E1 /	F 7/	51/2	1/	01/	4 4 7 /	02/	012/	012/	1 1 3/	105/
14	4*	A1143	81⁄8	51⁄2	111/8	51⁄2	51/8	5½	1⁄2	21/4	117/16	3%	3'%16	3'9/16	1 1 916	13%
	41⁄2*	A1144 A1145						7								
	5* 5½*	A1145 A1146						7								
		A1140 A1160														
	21⁄2* 3*	A1160 A1161						4								
	3" 3½*	A1161 A1162						5½								
10	3½" 4*	A1162	81/8	5 54	101/	5 1/-	5 7/-	5½	1/2	01/-	117/16	23/-	213/	23/	113/	121/-
16		A1163	0 78	5%	121/8	51⁄2	51/8	5½	72	274	117/16	378	3.216	374	1 1716	1372
	4½* 5*	A1164						7								
								7								
	51⁄2*	A1166						7								

HOW TO ORDER

For ordering information refer to page 98.

NOTES:

- For double rod end cylinders add prefix letter "D" to cylinder code. Example: DA0180. (Refer to page 92.)
- * Model A43 is not available in these sizes.
- For double rod end cylinders from 8" thru 16" bore, add ½" to this dimension (except 10" and 12"; add ½").

Rod End Styles and Dimensions For rod end styles

and dimensions see the Table 3

Page

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

in the inside cover of the

catalog.

U

Series A

ii

TABLE 2A

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	E	EB	EE	EL	EO	ET	F	G	J	K	NT	R	SB	ST	SU	sw	ТВ	TN	TS	US
8	81⁄2	¹¹ ⁄16	3⁄4	11/8	5⁄8	2	-	2	1½	^{9⁄} 16	3⁄4-10	6.44	¹³ ⁄16	1	1%16	¹¹ ⁄16	11⁄8	41⁄2	91⁄8	111⁄4
10	105⁄8	¹³ ⁄16	1	1 5⁄16	5⁄8	25⁄8	-	21⁄4	2	¹¹ ⁄16	1-8	7.92	1 ½16	11⁄4	2	7⁄8	15⁄8	51⁄2	12¾	141⁄8
12	12¾	¹³ ⁄16	1	1 5⁄16	5⁄8	3%32	-	21⁄4	2	¹¹ ⁄16	1-8	9.40	1 ½16	11⁄4	2	7⁄8	1%	71⁄4	1 4½	16¼
14	14¾	¹⁵ ⁄16	1 1⁄4	11/2	3⁄4	325/32	-	23⁄4	21⁄4	¹³ ⁄16	11⁄4-7	10.90	15⁄16	11/2	21/2	11/8	21⁄4	83/8	17	19¼
16	17	1 ½16	11⁄4	2	11/8	35⁄8	-	23⁄4	21⁄4	¹³ ⁄16	1¾-6	12.65	15⁄16	1½	21⁄2	11⁄8	21⁄2	9¾	19¼	211⁄2

www.milwaukeecylinder.com

Series A, Pin and Trunnion Mount

milwaukee

Series MH

Series H

88

The dimensions given on this table are affected by the piston rod diameter and the stroke.

2 2 ¹ / ₂ 3 ¹ / ₄ 4	5% •1* 5% 1* •13%* 5% 1 1% •13%* 1 1% •13%* 1 1% 13% 13% 13% 13% 13% 13% 2*	A0011 A0012 A0110 A0111 A0112 A0120 A0121 A0122 A0123 A0130 A0131	4 4 41/8	2 ¹ / ₄ 2 ¹ / ₄ 2 ³ / ₈	1/4 1/2 1/4 1/2 5/8 1/4 1/2	5%8 1 5%8 1 11/4 5%8	5 ³ / ₈ 5 ³ / ₄ 5 ³ / ₈ 5 ³ / ₄ 6	1 ³ /4 2 ¹ /8 1 ³ /4 2 ¹ /8 2 ³ /8	51/2 57/8 51/2 57/8 61/8	41/8 41/2 41/8 41/2 43/4	1 ¹⁵ /16 2 ⁵ /16 1 ¹⁵ /16 2 ⁵ /16	47/8 51/4 4 ^{15/} 16 5 ⁵ /16	5 ⁷ / ₈ 6 ¹ / ₄ 5 ⁷ / ₈ 6 ¹ / ₄	6 ¹ /4 6 ⁵ /8 6 ¹ /4 6 ⁵ /8
2 2½ 3¼ 4	5% 1* •13%* 5% 1 13% •13%* 1 13% 13% 13% 13% 2*	A0110 A0111 A0112 A0120 A0121 A0122 A0123 A0130 A0131	4	21⁄4	1/4 1/2 5/8 1/4 1/2	5%8 1 11/4 5%8	5¾ 5¾ 6	1¾ 21⁄8	5½ 5%	41/8 41/2	1 ¹⁵ ⁄16 2 ⁵ ⁄16	4 ¹⁵ /16 5 ⁵ /16	5 ⁷ /8 6 ¹ /4	6¼
21/2 31/4 4	1* •13%* 5% 1 13% •13%* 1 13% 13% 13% 13% 2*	A0111 A0112 A0120 A0121 A0122 A0123 A0130 A0131			1/2 5/8 1/4 1/2	1 1¼ ⁵ ⁄8	5¾ 6	21⁄8	51/8	41⁄2	25/16	55⁄16	61⁄4	
21/2 31/4 4	•1%* 5% 1 1% •13% •13% 1 1% 1% 1% 2*	A0112 A0120 A0121 A0122 A0123 A0130 A0131			5/8 1/4 1/2	11/4 5/8	6							65⁄8
2½ 3¼ 4	5% 1 13% •13/4* 1 13% 13% 13/4 2*	A0120 A0121 A0122 A0123 A0130 A0131	41⁄8	23⁄8	1/4 1/2	5⁄8	-	23⁄8	61/8	13/.				
• 3¼ 4	1 13% •13% 1 13% 13% 13% 2*	A0121 A0122 A0123 A0130 A0131	41⁄8	23⁄8	1⁄2		= 4.4		- / -	494	2%16	5%16	61⁄2	61/8
• 3¼ 4	13/8 •13/4* 1 13/8 13/4 2*	A0122 A0123 A0130 A0131	41⁄8	23⁄8			51⁄2	1¾	5%	4¼	1 ¹⁵ ⁄16	51/16	6	63/8
• 3¼ 4	•1¾* 1 1¾ 1¾ 2*	A0123 A0130 A0131	170	270	- /	1	51/8	21⁄8	6	45⁄8	25⁄16	51/16	63⁄8	6¾
3½ 4	1 1¾ 1¾ 2*	A0130 A0131			5⁄8	11⁄4	61⁄8	23⁄8	6¼	41⁄8	2%16	511/16	65⁄/8	7
4	1 ³ / ₈ 1 ³ / ₄ 2 [*]	A0131			3⁄4	1½	63/8	25⁄8	63⁄8	51⁄8	213/16	5 ¹⁵ ⁄16	61/8	71⁄8
4	1¾ 2*				1⁄4	3⁄4	61/8	21⁄4	61/8	5	27/16	6	75⁄8	81⁄8
4	2*	A 0 4 0 0	47⁄8	25%	3⁄8	1	71⁄8	21⁄2	71⁄8	51⁄4	211/16	6¼	71⁄8	83⁄8
4		A0132	170	270	1⁄2	11⁄4	73⁄8	23⁄4	73⁄8	51⁄2	2 ¹⁵ ⁄16	6½	81⁄8	85⁄8
4		A0133			1⁄2	13⁄8	71⁄2	21/8	71⁄2	51%	31⁄16	65⁄8	81⁄4	8¾
4	1	A0140			1⁄4	3⁄4	61/8	21⁄4	61/8	5	27/16	6	75⁄8	81⁄8
2	13⁄8	A0141			3⁄8	1	71⁄8	21⁄2	71⁄8	51⁄4	211/16	6¼	71⁄8	83⁄8
	13⁄4	A0142	41/8	25⁄8	1⁄2	11⁄4	73⁄/8	23⁄4	73⁄8	51⁄2	2 ¹⁵ ⁄16	6½	81⁄8	85⁄8
	2	A0143			1⁄2	13⁄8	71⁄2	21/8	71⁄2	5%	31⁄16	65⁄8	81⁄4	8¾
	21⁄2*	A0144			5⁄8	1%	7¾	31⁄8	7¾	51/8	35⁄16	61/8	81⁄2	9
	1	A1x50			1⁄4	3⁄4	71⁄8	21⁄4	71⁄8	51⁄4	27/16	65⁄16	71⁄8	83⁄8
	13⁄8	A1x51			3⁄8	1	73⁄8	21⁄2	73⁄8	51⁄2	211/16	6%16	81⁄8	85⁄8
	13⁄4	A1x52			1⁄2	11⁄4	7%	23⁄4	75⁄8	5¾	2 ¹⁵ ⁄16	6 ¹³ ⁄16	83⁄8	81/8
5	2	A0153	51⁄8	21/8	1⁄2	13⁄8	7¾	21/8	7¾	51/8	31⁄16	615/16	81⁄2	9
	21⁄2	A0154			5⁄8	1%	8	31⁄8	8	61⁄/8	35⁄16	73⁄16	8¾	9¼
	3	A0155			5⁄8	1%	8	31⁄8	8	61⁄8	35⁄16	73⁄16	8¾	91⁄4
3	31⁄2*	A0156			5⁄8	1%	8	31⁄8	8	61⁄8	35⁄16	73⁄16	8¾	91⁄4
	13⁄8	A0160			1⁄4	7⁄8	81⁄8	25⁄8	8¼	51/8	2 ¹³ ⁄16	71/16	91⁄8	10
	1¾	A0161			3⁄8	11⁄8	83%	21⁄8	81⁄2	61⁄8	31⁄16	75⁄16	93⁄8	10¼
	2	A0162			3⁄8	11⁄4	81⁄2	3	85⁄8	6¼	33⁄16	71/16	91⁄2	10¾
6	21⁄2	A0163	5¾	31⁄8	1⁄2	1½	8¾	31⁄4	81⁄8	6½	37⁄16	711/16	9¾	10%
	3	A0164			1⁄2	1½	8¾	31⁄4	81⁄8	61⁄2	37⁄16	711/16	9¾	101/8
	31⁄2	A0165			1⁄2	1½	8¾	31⁄4	81⁄8	61⁄2	37⁄16	711/16	9¾	10%
	4	A0166			1⁄2	11/2	8¾	31⁄4	81/8	61⁄2	37⁄16	711/16	9¾	10%

The dimensions are constant regardless of rod

3⁄8

LH LR Μ MR Ν TD TL.

5⁄8

5⁄8

1

5⁄8

5⁄8

5⁄8 1/2

11/16

11/4 11/4

1⁄2 ²¹/₃₂ 7⁄8

1/2

3⁄4

3⁄4 ¹⁵⁄16

1

11/16

11/16

15/16

7⁄8 1 1 11/8 4

7/8

11⁄4 1

11/4 1 1 11/4 6 5 8 2 51/4 5 71⁄4 61⁄2

13/16 15/8

1 1

1 1 11/8 41⁄2 3% 61/2 11/2 31/2

13⁄8 13⁄8

1 11/4 51⁄4 41⁄8

11/2 81/2

L

11/4

diameter or stroke.

H₂ J κ

¹³⁄16

¹³⁄16

13/16

11/4 11/4

1 1⁄4 3⁄4

1 5⁄16 3⁄4

1 5⁄16 3/4 5/8

F G

3⁄8 11/2

5⁄8 13⁄4

For bore diameter sizes 8" to 16" see next page.

HOW TO ORDER

For ordering information refer to page 98.

NOTES:

- For double rod end cylinders add prefix letter "D" to cylinder code. Example: DA0011. (Refer to page 92.) Double rod ends are not available on clevis mount Series A cylinders.
- Available with fixed nonadjustable cushions on rod end and standard adjustable cushions on the blind end only.
- Removable retainer not available for these bore and rod combinations: A61 and A73 mounting styles.

A73

TK TM UH UM

21/8

7

MilCad Cylinder

Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

A74

TK TM UH UM UT

31/2 51/2

41/4 61/2

7

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

11/2 www.milwaukeecylinder.com

3⁄4

11/4

TABLE 2A

CB CD CW

1/2 1/2 21/2 3⁄8 5⁄8

1/2 1/2 3 3⁄8 5⁄8 3/8 11/2

3⁄4

3⁄4 5⁄8 41/2 1/2 7⁄8 5⁄8 13/4 11/4 11/4 3⁄8 11/4 1 11/16

1 3⁄4 61/2 3⁄4 13⁄8 3⁄4 2 13⁄4 11/2 7/16 11/2

5⁄8

Е

2 3⁄8 5⁄8 3⁄8 11/2

3¾

1⁄2 7⁄8

EE EW

BT

3/4 3/4

3⁄4

 a_2

13° 3⁄4

13°

14° 3⁄4 11/4

14°

Bore

Ø 11/2 13° 3⁄4 3⁄4 1/2 1⁄2

2

21/2

31/4

4

5 14° 3⁄4 11⁄4 3⁄4 5⁄8 51/2 1⁄2 7⁄8 5⁄8 13⁄4 11⁄4 11/4 7/16 11/4 1 **1**¹/₁₆ 3⁄4 ^{15/}16 11/4 1 1 11/4 7 6 9 2 6¼ 6 81/4 71/2

6 121/2° 1

11/8 31/2 23/8 51/2 11/4 21/2 21/2 41/2

2 41⁄2

111/4 21/2 75/8

6 11/2 3 3 5

71/4

4

41/2

5

53⁄4

103/8 91/4

Series A, Pin and Trunnion Mount

Series MH

TABLE 1A

The dimensions given on this table are affected by the piston rod diameter and the stroke.

Bore Ø	Rod MM	Cylinder Code ♦	LB	Р	TT	V	w	хс	XG	ХН	XJ	Y	ZB	ZC	ZH
~	1%	A0180			4	1⁄4	15⁄8	81⁄4	25⁄8	83/8	6	2 ¹³ ⁄16	75/16	91⁄4	101//8
	13⁄4	A0181			4	3⁄8	17/8	81/2	27/8	85/8	6¼	31/16	7%16	91/2	10%
	2	A0182			4	3/8	2	85%	3	83/4	63/8	3 ³ /16	711/16	95/8	101/2
	21/2	A0183			4										
8	3	A0184	51⁄8	31⁄4	5½										
_	31⁄2	A0185			5½										
	4	A0186			5½	1⁄2	21⁄4	81/8	3¼	9	65⁄8	37⁄16	7 ¹⁵ ⁄16	97⁄8	10¾
	41⁄2	A0187			7										
	5	A0188			7										
	51⁄2	A0189			7										
	13⁄4	A1100			4	3⁄8	11⁄/8	10¾	3	-	71⁄4	31⁄8	8 ¹⁵ ⁄16	11¾	-
	2	A1101			4	3⁄8	2	10½	31⁄8	-	73⁄8	3¼	9 ¹ /16	111/8	-
	21⁄2	A1102			4										
10	3	A1103	63⁄8	41/8	51⁄2										
10	31⁄2	A1104	0%8	4 %	51⁄2										
	4	A1105			51⁄2	1⁄2	21⁄4	10¾	3%	-	7%	31⁄2	95/16	121/8	-
	41⁄2	A1106			7										
	5	A1107			7										
	5½	A1108			7	2/	0	441/	01/		77/	01/	09/	107/	
	2 2½	A1120 A1121			4	3⁄8	2	111/8	31⁄8	-	71⁄8	3¼	9%16	121/8	-
	3	A1121 A1122			4 5½										
	31/2	A1122 A1123			5½										
12	4	A1124	61/8	45⁄8	51/2	1/2	21⁄4	11%	33/8	_	81⁄8	31⁄2	9 ¹³ ⁄16	131/8	_
	41/2	A1125			7	12	2/4	11/0	0/0		0/0	072	• /	,.	
	5	A1126			7										
	5½	A1127			7										
	21/2	A1140			4										
	3	A1141			5½										
	31⁄2	A1142			5½										
14	4	A1143	81⁄8	51⁄2	51⁄2	1⁄2	21⁄4	121⁄8	35⁄8	-	9¼	3 ¹³ ⁄16	11 ¾16	141⁄8	-
	41⁄2	A1144			7										
	5	A1145			7										
	51⁄2	A1146			7										
	21⁄2	A1160			4										
	3	A1161			51⁄2										
	31⁄2	A1162			51⁄2									1.07	
16	4	A1163	81⁄8	5%	51⁄2	1⁄2	21⁄4	143⁄8	3%	-	9¼	3¾	113/16	161/8	-
	41⁄2	A1164			7										
	5	A1165			7										
	51⁄2	A1166			7										

HOW TO ORDER

For ordering information refer to page 98.

NOTES:

 For double rod end cylinders add prefix letter "D" to cylinder code. Example: DA0180. (Refer to page 92.) Double rod ends are not available on clevis mount Series A cylinders.

Rod End Styles and Dimensions For rod end styles and dimensions see the Table 3 in the inside cover of the catalog.

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

MilCad Cylinder Configurator

Page

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

U

A73

The dimensions are constant regardless of rod diameter or stroke.

Bore Ø	a ₂	BT	СВ	CD	CW	E	EE	EW	G	H ₂	J	К	L	LH	LR	м	MR	Ν	TD	TL	тк	тм	UH	UM	тк	тм	UH	UM	UT
8	12½°	1	1½	1	3⁄4	81⁄2	3⁄4	1%	2	1¾	1½	⁹ ⁄16	1½	11⁄4	11⁄4	1	1 ¾16	1%	1%	1%	1½	10½	9	13¼	21⁄2	9¾	91⁄2	12½	111⁄4
10	-	11⁄4	2	13⁄8	1	10%	1	-	21⁄4	-	2	¹¹ ⁄16	21⁄8	-	21⁄8	13⁄8	13⁄8	-	1 ¾	13⁄4	2	131⁄8	11	16%	3	12	11¾	15½	141⁄8
12	-	11⁄4	21⁄2	1 ¾	11⁄4	12¾	1	-	21⁄4	-	2	11/16	21⁄4	-	2	13⁄4	13⁄4	-	1 ¾	13⁄4	2	15¼	13¾	18¾	3	14	171⁄2	18¾	16¼
14	-	11⁄2	21⁄2	2	11⁄4	14¾	1 1⁄4	-	2¾	-	21⁄4	¹³ ⁄16	21/2	-	21⁄4	2	2	-	2	2	21⁄4	17¾	153/8	21¾	31⁄2	16¼	16	201⁄4	18¾
16	-	11⁄2	3	2	11⁄4	17	1 1⁄4	-	2¾	-	21⁄4	¹³ ⁄16	4	-	31%	21⁄2	3	-	2	2	21⁄4	20	18	24	-	-	_	-	-

www.milwaukeecylinder.com

A74

91

Series A, Double Rod End Dimensional Data

DOUBLE ROD END CYLINDERS

Milwaukee Cylinder's Double Rod End Cylinders are available with all the standard types of mountings, except 61 and 62.

To obtain dimensioning information on a double rod end cylinder, first select the desired mounting style and refer to the corresponding single rod end cylinder model shown on the preceding pages. After you have determined all necessary dimensions from the previous page covering the desired mounting, turn back to this page.

Supplement those dimensions with additional ones from the drawings below and the table on the right. These added dimensions differ from, or are in addition to, those shown on the preceding pages and provide the additional information needed to completely dimension a double rod end cylinder model.

On a double rod end cylinder where two different rod ends are required, or two different rod sizes are required, or cushions on one end are required, be sure to state clearly which rod is to go at which end of the cylinder. When two types of mounting styles are required, be sure to specify their relationship to the piston rods if they are not the same.

Bore Ø	Rod MM	Cylinder Code	LD*	SE*	SS*	ZL	ZM
1½	5% 1	DA0011 DA0012	41⁄8	63⁄8	3%	5 ³ ⁄ ₄ 6 ¹ ⁄ ₈	61⁄8 67⁄8
	5⁄8	DA0110				5 ¹³ ⁄16	61⁄8
2	1	DA0111	41/8	63⁄4	3%	6 ³ ⁄16	61/8
	1%	DA0112				67/16	73/8
	5⁄8	DA0120				5 ¹⁵ /16	6¼
2 ½	1	DA0121	5	71⁄8	31/2	6 ⁵ /16	7
	1%	DA0122	-		- / -	6%16	71/2
	13/4	DA0123				6 ¹³ /16	8
	1	DA0130 DA0131				7 ¹ /8 7 ³ /8	7½ 8
31⁄4	1¾ 1¾	DA0131	6	73⁄4	3¾	75/8	81/2
	2	DA0132				73⁄4	8 ³ ⁄4
	1	DA0100				71/8	71/2
	1%	DA0141				73⁄8	8
4	13⁄4	DA0142	6	8	3¾	75⁄8	81/2
	2	DA0143				73⁄4	83⁄4
	21/2	DA0144				8	91⁄4
	1	DA1x50				71/16	73⁄4
	13⁄8	DA1x51				711/16	81⁄4
_	13⁄4	DA1x52				7 ¹⁵ /16	8¾
5	2	DA0153	6¼	83/8	35%	81/16	9
	21/2	DA0154				05/	01/
	3	DA0155				85/16	91⁄2
	31/2	DA0156				85/16	83⁄4
	13/8	DA0160				0%16 8%16	0% 9¼
	1¾ 2	DA0161 DA0162				8 ¹¹ / ₁₆	91⁄2
6	2 ¹ /2	DA0102	7	81/8	41/8	0 / 18	572
·	3	DA0164	,	0/0	170		
	31/2	DA0165				815/16	10
	4	DA0166					
	1%	DA0180				7 ¹³ /16	81/8
	13⁄4	DA0181				81/16	93/8
	2	DA0182				8 ³ ⁄16	95⁄8
	21/2	DA0183					
8	3	DA0184	5%	71/8	41⁄4		
-	31/2	DA0185				07/	101/
	4	DA0186				87/16	101/8
	4½	DA0187					
	5 5½	DA0188					
	13/4	DA0189 DA1100				93/16	103/8
	2	DA1100				95/16	10%
	21/2	DA1102					
	3	DA1103					
10	31⁄2	DA1104	6%	91⁄4	41/8		
	4	DA1105				9%16	111/8
	41⁄2	DA1106					
	5	DA1107					
	5½	DA1108				001	
	2	DA1120				93⁄16	111/8
	2½	DA1121					
	3 3½	DA1122					
12	4	DA1123 DA1124	71⁄8	93⁄4	5%	101/16	115⁄8
	4 4½	DA1124 DA1125					
	5	DA1126					
	51⁄2	DA1127					
	21/2	DA1140					
	3	DA1141					
	31/2	DA1142					
14	4	DA1143	85%	11%	61⁄/8	11 ¹¹ ⁄16	131⁄8
	41/2	DA1144					
	5	DA1145					
		DA1146					
	51/2			1	1		
	21⁄2	DA1160					
	2½ 3	DA1160 DA1161					
	2½ 3 3½	DA1160 DA1161 DA1162	Q 5/~	113/.	61/-	11114-	1014
16	2½ 3 3½ 4	DA1160 DA1161 DA1162 DA1163	85⁄8	11¾	61⁄/8	11 ¹ 1⁄16	131⁄8
	2½ 3 3½	DA1160 DA1161 DA1162	85⁄8	11¾	61⁄8	1111/16	131⁄8

*Note: These dimensions are to be substituted for the related mounting dimensions given on the preceding pages. All dimensions given on this table are plus stroke.

Series MH

KEY MOUNT CYLINDERS

The *Milwaukee Cylinder* Key Mount retainer plate is a mounting option designed to add rugged stability to foot and side mount cylinders. The retainer plate is extended below the mounting surface of the cylinder. This extension may be fitted into a milled keyway in your mounting pad, eliminating the need for welded keys or locator pins.

HOW TO ORDER

For ordering information refer to page 98.

V KEY MOUNT CYLINDERS

Bore Ø	E	F	FA	G	PA	PD
1½	2	3⁄8	.312/.310	11⁄2	³ ⁄16	1 ³ ⁄16
2	21⁄2	3⁄8	.312/.310	11⁄2	3⁄16	17⁄16
2 ½	3	3⁄8	.312/.310	11⁄2	3⁄16	1 ¹¹ /16
31⁄4	3¾	5⁄8	.562/.560	13⁄4	5⁄16	23/16
4	41⁄2	5⁄8	.562/.560	13⁄4	5⁄16	2%16
5	51⁄2	5⁄8	.562/.560	13⁄4	5⁄16	31⁄16
6	61⁄2	3⁄4	.687/.684	2	3⁄8	35⁄8

milwaukee Ylinder

Series MN

Design Guide

Series A, Design Options

SAE Straight Thread O-ring Port

Rod Boots

Metallic Rod Wipers

MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

DESIGN OPTIONS

Standard Ports

The *Milwaukee Cylinder* Series A Cylinders are manufactured as standard, the largest NPTF tapered thread ports that will fit in both the rod and blind ends of a given bore size. Upon request, extra ports can be provided on the sides of the end caps not occupied by mountings or cushion adjusters.

Oversize Ports

On most bore sizes, welded bosses may be provided for oversize NPTF ports. These bosses protrude from the sides of the end caps. For information as to the boss height in relation to your bore and port requirements, contact your local *Milwaukee Cylinder* Representative. Also, special heavier end caps can be provided so that oversize ports can be accommodated without the use of a welded boss.

Straight Thread Ports

On request, *Milwaukee Cylinder* will furnish an SAE straight thread O-Ring port on the Series A Cylinders. In addition to the standard oversize NPTF ports, welded bosses may also be used for oversize SAE straight thread O-Ring ports. For further information on oversize SAE ports, contact the factory.

Note: Flange and manifold syle ports are available from *Milwaukee Cylinder*.

V PORT SIZES

Bore		Oversized	SAE St	raight O-Ring Port
Ø	NPTF Port EE	NPTF Port EE ₁	EE ₂	SAE Standard Thread Series
11/2	3⁄8	1/2	#6	⁹ ⁄16-18
2	3⁄8	1/2	#6	⁹ ⁄16-18
2 ½	3⁄8	1/2	#6	⁹ ⁄16-18
31/4	1/2	3⁄4	#10	7⁄8-14
4	1/2	3⁄4	#10	7⁄8-14
5	1/2	3⁄4	#10	7⁄8-14
6	3⁄4	1	#12	11/16-12
8	3⁄4	1	#12	11/16-12
10	1	11⁄4	#16	15⁄16-12
12	1	11⁄4	#16	15⁄16-12
14	11⁄4	11/2	#20	15%-12
16	11⁄4	11/2	#20	1%-12

Rod Boots

When cylinders are used in areas of high contamination or where contaminants have an air hardening property, the exposed piston rod should be covered with a rod boot to protect the rod bearing and seals. A rod boot is simply a collapsible cover. It is of sewn construction made from a neoprene coated fabric. The rod boots are impervious to oil, grease and water. They will operate effectively from 0°F to +200°F without cracking. For additional details on Rod Boots, please see page 186.

Metallic Rod Wipers

If requested, metallic rod wipers will be supplied in place of the standard synthetic rubber wiper. This type of seal is recommended for applications where contaminants would tend to cling to the rod and damage a standard synthetic rubber rod wiper.

Series A

Series H

Special Design Options

DESIGN OPTIONS FOR SPECIAL CYLINDERS

Special Rod Ends

Modifications of standard or entirely special rod ends are available from *Milwaukee Cylinder*. When your requirements call for a special rod end style, your order should include a sketch if it is to be an entirely special rod end or note reference as to which letter dimensions you wish to have modified (see inside front cover).

Special Assemblies from Standard Parts

Each style of the various standard cylinder mountings is illustrated, using the commonly recognized cylinder dimensional symbols of the National Fluid Power Association. Each side of the end views are numbered to aid in communication when referring to the relationship between the ports and the mountings. When requesting information or placing an order that requires a dimension other than standard, always make reference to the given dimensional symbol in the catalog and then give your requirements.

Cushion Adjustment Locations

A ball check is supplied as standard in position #2 and a cushion adjustment needle is supplied **as standard in position #2 on most models.** The cushion needle and ball check are interchangeable as far as location and may be put in any side not occupied by a port or mounting.

Port Locations

Ports are located in position #1 as standard unless otherwise specified. By using the position numbers given with the end views in the

dimensional data section of this catalog, ports can be arranged in any one of four 90° positions in relation to the cylinder mounting. When ports are relocated on a cushioned cylinder, the cushion needle and ball check are automatically relocated to hold their relationship to the port as on a standard cylinder, unless otherwise specified at the time of the order.

Removable Trunnion Pins

Removable trunnion pins are available on models A71 and A72. They can be used on all bore and rod combinations, except on the largest

oversize rods offered with each bore size on all model

A71 cylinders.

Single-Acting Cylinders

The *Milwaukee Cylinder* Series A Cylinders are designed for either singleor double action. When used as a single-acting cylinder, pneumatic power drives the piston in one direction, only relying on either the load or an external force to return the piston after the pressure is exhausted.

Single-Acting Spring Cylinders

Single-acting spring return cylinders normally have a spring inside of the cylinder to return the piston to its original position. The application load and friction conditions must be specified when placing an order to properly size the spring. Also specify whether the spring is to return or advance the piston. A spring return cylinder is designed with a stop tube to act as spring guide, which prevents binding of the cylinder due to misalignment of the spring. To accurately determine the cylinder length and mounting dimensions for your application, contact your local Milwaukee Cylinder representative or the factory.

Proximity Switches

End of Stroke Limit Switches:

We provide inductive proximity switches for end of stroke sensing. These

non-contact switches detect the presence of the spud/cushion bushing. See page 185 for more information.

Combined Mountings

Standard mountings may be combined when specified by the customer. Some examples of this are:

These and other combinations can be readily made from standard parts. If you are unsure of a possible combination or if it will suit your particular needs, consult with your local *Milwaukee Cylinder* representative or contact the factory.

Adjustable Stroke Cylinders

When a cylinder application requires stroke adjustment, *Milwaukee Cylinder* offers a number of designs. This particular design is externally adjustable, incorporating a threaded rod (of piston rod quality) with a seal nut. This provides a proven-effective, high and low pressure seal, affording maximum sealing on the stroke adjustment rod.

Further information concerning design limitations, cushioning or alternate designs can be obtained by contacting *Milwaukee Cylinder*.

CAUTION!

Cylinders with removable trunnion pins will have a reduced pressure rating.

Consult the factory.

Design Guide

Power Units/Valves

Series

ΜN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Series A, Stop Tubes

Series A

END FREE TO MOVE

FIGURE 1

K=4L

K = L

•K=L•

FREE END

PIN MTG.

PARTIAL END RESTRAINT

For me on Sto page ⁻ Design Guide

Stop Tubes For more information on Stop Tubes, see page 181 in the Design Engineer's Guide.

STOP TUBES

Stop tubes are used to maintain bearing pressure within acceptable limits and are recommended on cylinders with long strokes or poorly guided rods.

The stop tube is a spacer between the rod end cap and the piston, which provides separation between the piston and the rod bearing. This separation reduces the moment forces developed between the rod bearing and piston when the rod is extended.

Depending on the type of air cylinder you require, *Milwaukee Cylinder* offers two stop tube designs. When an air cylinder cushioned on the rod end requires stop tube, an additional piston and spacer is used (refer to Figure A). If an air cylinder requiring stop tube is not cushioned, only a spacer is used (refer to Figure B).

To determine if stop tube is necessary for your cylinder requirements, you have to solve for "K" (refer to Figure 1). If your required cylinder has a "K" dimension in excess of 40 inches, stop tube is required. For each 10 inch increment or fraction thereof in excess of 40 inches, one inch of stop tube is recommended. When stop tube is required, the overall length of the cylinder will be increased by the length of the stop tube to be used.

To determine "K" (see Figure 1) *Note: W = the rod stick out (refer to pages 74-93)

K = 4L = 4 (stroke + W*)

Cylinder #2 - see Figure 1

K = L = (CA or CE) + XG + Stroke Note:

CA = rod eye dimension (back inside cover) CE = rod clevis dimension (back inside cover) XG = mounting dimension page 88 or 90

Cylinder #3 - see Figure 1

 $K = L = W^* + Stroke$

Cylinder #5 - see Figure 1

 $K = L = (CA \text{ or } CE) + XC + (2 \times Stroke)$

Note:

CA = rod eye dimension (back inside cover)

CE = rod clevis dimension (back inside cover)

XC = mounting dimension page 88 or 90

Cylinder #6 - see Figure 1

 $K = L = (CA \text{ or } CE) + XJ + (2 \times Stroke)$

Note:

CA = rod eye dimension (back inside cover) CE = rod clevis dimension (back inside cover) XJ = mounting dimension page 88 or 90

Cylinder #7 – see Figure 1

 $K = L/2 = (W^* + Stroke)/2$

When mounting long stroke cylinders, care should be taken to assure cylinder alignment over the entire length of stroke. The use of external guides or swivel bushings is recommended to reduce side load conditions and prolong the cylinder's service life. **Note:** Stop tube length must be added to "K" factor before making final selection of rod size. This is primarily true in No. 5 long stroke applications.

The stop tube is located between the piston and the rod end cap. It limits the extended stroke of the cylinder, providing additional strength for less cost and reduced weight than the use of an oversize rod.

▼ TABLE 1 - VALUE OF "K" IN INCHES

Thrust Force						Piston F	lod Diar	neter (in	I)				
(in-lbs)	⁵ ⁄8	1	1 ¾	1 ¾	2	2 ½	3	3 ½	4	4 ½	5	5 ½	7
400	35	84	134	-	-	-	-	-	-	-	-	-	-
700	30	68	119	-	-	-	-	-	-	-	-	-	-
1,000	26	60	105	156	190	-	_	-	-	-	-	_	-
1,400	24	54	93	144	175	244	308	-	-	-	-	-	-
1,800	23	48	84	127	160	230	294	366	-	-	-	-	-
2,400	18	45	75	114	145	214	281	347	-	-	-	-	-
3,200	16	40	68	103	131	196	262	329	398	-	-	-	-
4,000	12	38	63	93	119	174	240	310	373	446	-	-	-
5,000	9	36	60	87	112	163	225	289	359	426	-	-	-
6,000	-	30	56	82	102	152	209	274	342	411	476	-	-
8,000	-	25	51	76	93	136	186	244	310	375	448	-	-
10,000	-	21	45	70	89	125	172	221	279	349	412	-	-
12,000	-	17	41	64	85	117	155	210	270	326	388	455	-
16,000	-	-	35	57	75	110	141	188	233	291	350	421	-
20,000	-	-	28	52	66	103	136	173	218	270	325	385	-
30,000	-	-	-	39	56	87	120	156	190	232	285	330	-
40,000	-	-	-	24	43	75	108	142	177	210	248	293	-
50,000	-	-	-	-	30	66	97	131	165	201	234	268	408
60,000	-	-	-	-	-	57	88	119	154	190	226	256	384
80,000	-	-	-	-	-	36	71	104	136	170	204	240	336
100,000	-	-	-	-	-	-	56	91	120	154	199	224	324
120,000	-	-	-	-	-	-	45	76	108	146	174	207	313
140,000	-	-	-	-	-	-	-	64	98	129	162	194	301
160,000	-	-	-	-	-	-	-	47	87	118	149	182	279
200,000	-	-	-	-	-	-	-	-	65	98	131	160	260
250,000	-	-	-	-	-	-	-	-	-	72	109	143	236
300,000	-	-	-	-	-	-	-	-	-	-	85	120	212
350,000	-	-	-	-	-	-	-	-	-	-	53	100	195
400,000	-	-	-	-	-	-	-	-	-	-	-	72	182
500,000	-	-	-	-	-	-	-	-	-	-	-		152
600,000	-	-	-	-	-	-	-	-	-	-	-	-	114
700,000	-	-	-	-	-	-	-	-	-	-	-	-	70

▼ TABLE 2 - DEDUCTIONS FOR PULL STROKE FORCE & DISPLACEMENT

Bore Ø	Piston Rod	Pisto	Piston Rod Force in Pounds for Various Pressures							Displacement per inch of Stroke		
	Area	30 psi	50 psi	80 psi	100 psi	125 psi	150 psi	200 psi	250 psi	Pressure Air Cubic Ft. Displaced	Free Air Cubic Ft. @ 80 psi	
5⁄8	.307	9	15	25	31	38	46	62	77	.00018	.00116	
1	.785	23	39	63	79	98	118	158	197	.00045	.00290	
1%	1.4895	44	74	119	149	186	223	298	372	.00086	.00554	
1 ¾	2.405	72	120	192	241	300	261	482	601	.00139	.00895	
2	3.142	94	157	251	314	392	471	628	785	.00182	.01172	
2 ½	4.909	147	245	393	491	613	736	982	1227	.00284	.01829	
3	7.069	212	353	566	707	883	1060	1414	1767	.00409	.02635	
31⁄2	9.621	288	481	770	962	1202	1443	1924	2405	.00557	.03588	
4	12.566	377	628	1006	1257	1571	1885	2514	3142	.00727	.04683	
41⁄2	15.904	477	795	1272	1590	1987	2385	3180	3975	.00920	.05926	
5	19.635	589	982	1571	1964	2455	2946	3928	4910	.01137	.07324	
51⁄2	23.758	712	1188	1901	2376	2970	3564	4752	5940	.01375	.08857	

▼ TABLE 3 - THRUST FORCE AND DISPLACEMENT

Piston Ø	Piston Rod	Cylii	Cylinder Force in Pounds for Various Pressures							Displacement per inch of Stroke		
	Area	30 psi	50 psi	80 psi	100 psi	125 psi	150 psi	200 psi	250 psi	Pressure Air Cubic Ft. Displaced	Free Air Cubic Ft. @ 80 psi	
1½	1.77	53	88	141	177	221	265	354	442	.00102	.00657	
2	3.14	94	157	251	314	392	471	628	785	.00182	.01185	
2 ½	4.91	147	245	393	491	613	736	982	1227	.00284	.01829	
31⁄4	8.30	249	415	664	830	1037	1245	1660	2075	.00480	.03091	
4	12.57	377	628	1006	1257	1571	1885	2514	3142	.00727	.04682	
5	19.64	589	982	1571	1964	2455	2946	3928	4910	.01137	.07324	
6	28.27	848	1413	2262	2827	3533	4240	5654	7067	.01636	.10538	
8	50.27	1508	2513	4022	5027	6283	7540	10054	12567	.02909	.18740	
10	78.54	2356	3927	6283	7854	9817	11781	15708	19635	.04545	.29279	
12	113.10	3393	5655	9048	11310	14137	16965	22620	28275	.06545	.42160	
14	153.90	4617	7695	12312	15390	19237	23085	30780	38475	.08906	.57367	
16	201.10	6030	10050	16080	20100	25125	30150	40200	50250	.11620	.74900	

www.milwaukeecylinder.com

CYLINDER SIZING

The selection of the correct rod size is one of the most important factors in sizing a cylinder. The standard rod for each bore size that *Milwaukee Cylinder* manufactures is sufficient to handle the maximum tension force that the cylinder is capable of producing. It is primarily in compression and long stroke, high thrust applications that the column strength needs to be considered.

The following steps should be used to determine the proper rod size for an application:

 Select the cylinder bore size required from Table 3 based on the required cylinder thrust force and the operating line pressure at the cylinder.

Series

Þ

Series

MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Power Units/Valves

Design Guide

- Determine the length between mounting points or "L" as shown on Figure 1, page 96.
- Based on the distance between mounting points ("L"), determine the value of "K" as shown on Figure 1, page 96.
- Using the thrust force and the developed "K" dimension, refer to Table 1 to select the proper rod size.
- If an oversized rod is required, re-check the overall length dimension ("K") in Step 1 and confirm your previous rod size selection.

To determine the cylinder pull (tension), stroke force, or displacement, deduct the force or displacement corresponding to the rod size in Table 2 from the force or displacement corresponding to the bore size shown in Table 3.

Series A, Ordering Information

Feature	Description	Page Number	Code Number	Example
Double Rod End		92	D	<u>A143</u> - <u>31</u> - <u>1</u> <u>4</u> - <u>7</u> × <u>143/4</u>
Cylinder Code	Refer to TABLE 1A	77, 79, 81, 83, 85, 87, 89, 91	-	
Mounting Style	Model Number Only	76, 78, 80, 82, 84, 86, 88, 90	-	
Rod End Style	Code Number	inside front cover (ii)	_	→
Cushions	None Rod End Blind End Both Ends	- - - -	1 2 3 4	
Cylinder Modifications	Special		S	Leave Blank
Seals	Buna-N (-20° to 200 Viton (-15° to 350° F Special	,	7 8 S	*If Special Describe Requirements
Stroke	Specify in Inches Including Fractional Requirements		_	•

DUPLICATE CYLINDERS

Duplicate cylinders can be ordered by giving the serial number from the nameplate of the original cylinder. Factory records supply a quick, positive identification.

> MilCad Cylinder Configurator

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders. *NOTE: Use "S" if any special design features or seals are required, describe in detail on your order.

EXAMPLE: The code for a pneumatic cylinder 4" bore, rod end rectangular flange mounting, 1%4" rod, Style No. 1 rod end, cushion both ends, standard seals with a 14%4" stroke is **A142-31-14-7x14%**.

HOW TO ORDER

Series A Cylinders

Standard Series A Cylinders can be completely and accurately described by a model number. If your requirements are completely standard, select the alphanumeric codes from above that represent your cylinder and place them in the sequence indicated by the example. Use of the cylinder model number will eliminate untimely delays in handling your order.

General Order Data

(covered by the cylinder code)

- Bore & Rod Size or the Cylinder Code: (refer to pages 76-93)
- 2. Mounting Style: (refer to page 76-93)
- Rod End Style: (refer to Inside Cover, page ii)
- 4. Cushion Requirements
- 5. Length of Stroke

Application Data

- 1. Port Requirements: refer to page 94.
- Operating Fluid or Medium: Series A Cylinders are equipped with seals for use with shop air or petroleum base fluids. Specify on your order if any other type of operating medium is to be used.
- Temperature Range: Series A pneumatic cylinders contain seals of Nitrile (Buna-N) suitable to -20° F to +200° F. Specify your operating temperature if your application does not fall within this temperature range.
- Operating Pressure: Series A Cylinders are rated for 250 psi. If your requirements are in excess of the rated pressure, describe your application in your order.
- 5. Accessories: Specify any accessories you require, using the part numbers given on the inside back cover.
- Special Requirements: If you require special seals, rod material, stop tube, center support, adjustable stroke or any other special requirements not covered, specify in detail on your order.

Series H

Series A

Replacement Parts

REPLACEMENT SEALS OR CYLINDER PARTS

For replacement seals or cylinder parts, the serial number of your cylinder, the cylinder model number and the item number of the part you require (below) should appear on your order. To order entire seal kits for your cylinder, simply specify the serial number and the cylinder model number from page 84 on your request for service parts.

HOW TO ORDER COMPLETE SEAL KITS

When ordering complete seal kits, specify the following information on your order:

- 1. The serial number of the cylinder the seals will be used on.
- 2. The bore and rod size.
- 3. If the cylinder is cushioned.

To eliminate untimely delays in the handling of your order, please use the seal kit code as shown in the example below:

Example:

Buna-N Kit No. XXXXX-7-50

- cylinder code number (refer to pages 76-93)

Viton Kit No. XXXXX-8-50

- cylinder code number (refer to pages 76-93)

ltem No.	Description
	Pieter Ded
1	Piston Rod
2	Cylinder Barrel
3	Head End Cap
4	Cap End Cap
5	Rod Bushing
6	Retainer Plate
7	Piston
8	Cushion Plunger
9	Cushion Adj. Needle
10	Ball Check Retainer
11	Ball Check
12	U-Cup Seal & Backup Washer for Piston
13	Rod Seal & Backup Washer for Rod Bushing
14	O-Ring Seal for Rod Bushing
15	Rod Wiper
16	O-Ring Seal for Ball Check Retainer
17	Gasket
18	Tie Rod Nut
19	O-Ring Seal for Cushion Adj. Needle
20	Tie Rod
21	Self-Locking Cap Screw
22	O-Ring for Floating Cushion

Retainer Plate Cap Screw Torques

V For Square Retainers

Bore	Torque
Ø	(Ft-lbs)
1 ½	10
2	20
2 ½	20
31⁄4	30
4	30
5	50
6	50

Tie-rod Nut Torques

V	Nut	Torque	Spe	ecificati	ions
•	ITML	iorquo		omout	

Bore	Torque (Ft-lbs)					
Ø	Steel	Composite				
1 ½	5	3				
2-2 ¹ / ₂	12	6				
3¼-4	30	15				
5 - 6	50	25				
8	100	50				
10	160	95				
12	160	135				
14	250	220				
16	250	250				

When it is necessary to remove the tierod nuts on a cylinder, they must be reassembled to the torque specifications given above. To prevent the tie-rods from twisting when tightened, use a vice grip or locking clamp. Note that the torque specification is based on lubricated threads. Series

Series

MN

Hyd-Pneu Devices

Manipulators

www.milwaukeecylinder.com

milwaukee

INSTALLATION FOR SERIES A General Information

Cleanliness

Cleanliness is the most important consideration when installing the cylinder. When cylinders are shipped from *Milwaukee Cylinder*, the ports are securely plugged with plastic plugs which should not be removed until the piping is to be installed. All piping should be thoroughly clean, to include the removal of all threading and flaring burrs or chips, before making the connection to the cylinder ports. One chip can cause premature failure of the cylinder or other system components.

Alignment

Improper alignment will result in excessive cylinder wear. Check to assure rod alignment between the cylinder and its mating component on your machine in both the extended and retracted positions.

Environment

Cylinders operating in areas where there is weld splatter, fast drying chemicals, paint, excessive heat or other hazardous conditions, should have covers or shields to prevent damage to the rod and rod seals.

MOUNTING RECOMMENDATIONS

Foot Mounted Cylinders

The use of high-strength alloy steel mounting bolts 1/16" smaller than the hole size is recommended. After final alignment, foot mounted cylinders should be dowel pinned in place.

Trunnion Mounted Cylinders

Lubricated pillow blocks designed for close tolerance applications should be used. It is important to rigidly mount and align the pillow blocks so that the trunnion pins will not be subjected to any extreme bending moments The rod end should be pivoted with the pivot pin in line and parallel to the axis of the trunnion pins.

Flush Mount Cylinders

The use of high strength alloy steel mounting bolts is recommended. Shear keys should be used to reduce the stress on the mounting bolts created by the normal push and pull forces created by the cylinder cycle.

Flange Mount Cylinders

The controlled diameter rod bushing extension can be used as a pilot to locate the flange mount. Dowel pins should be used after the cylinder is mounted and aligned to prevent shifting.

Clevis Mount Cylinders

This type of cylinder must be pivoted at both ends and the pins must be in line and parallel to each other. After the cylinder is mounted, the customer should check to assure that the cylinder is free to swing through its working arc without interference from other machined parts.

STORAGE

Often times, cylinders are delivered before a customer is prepared to install them and must be stored for a period of time. When storage is required:

- Select an area indoors for storage, which has dry and non-corrosive atmosphere. Take caution to protect the cylinder from both internal and external corrosion.
- Cylinders to be stored should be kept in a vertical position (piston rod up) whenever possible.
- 3. Port protector plugs should be kept in the cylinder ports until the time of installation.

Series H

CYLINDER TROUBLE SHOOTING

External leakage

If leaking occurs between the end cap and barrel, check tie-rod torque. Do not over torque. If the torque is correct, then replace the barrel seal. When leakage occurs in the rod bushing area, replace the rod seals. If leakage continues or reoccurs in short period of operation, check items 2 thru 5, page 99.

Cylinder misalignment

Side load is a common problem which occurs when the cylinder application does not allow the piston rod to work in line during the extend and retract motions of the cylinder. Evidence of this is excessive seal failure, bushing wear or galling of the piston rod. Often, bending of the piston rod or complete failure (breakage) of the rod occurs.

Contamination on the piston rod

Dirt and other material is often picked up when the piston rod is extended. When the rod is retracted in an excessive dirty application, it often carries the dirt back into the rod seal cavity of the cylinder, causing damage to the seals. With a slight modification of the cylinder rod end, a rod boot can be added to protect the rod bushing and seals for most applications.

Bad mountings

Due to wear of pivot pins or mounting bolts working loose, a cylinder may have side load, even though the rod was in line when the cylinder was first installed. All cylinder mountings should be checked periodically.

Damaged piston rod

An extended piston rod can be damaged by the impact of a hard object which could burr the rod. If this occurs, the rod should be checked immediately to prevent seal damage.

Internal leakage

Inside the cylinder, leakage past the piston seals can cause sluggish movement or settling of the cylinder under load conditions. This occurs due to leakage of worn piston seals or rings.

Creeping cylinder

When a cylinder is stopped in midstroke and it creeps, check for internal leakage. Creeping can also be caused by a worn control valve and this should be checked, even if the cylinder is found to have internal leakage.

CYLINDER MAINTENANCE

Rod Seal Replacement

When changing rod seals, extend the piston rod 3" or more if possible, being sure to support the rod at all times. Remove the retainer plate screws (if tie-rod nuts have to be removed, refer to the nut torque specification on this page when reassembling the cylinder), retainer plate and outer bushing. Using an eye hook or thin screwdriver, pry the vees from the end cap cavity (if low pressure air is applied to the rod end port, this will help to force the vees from the cavity). The new set of vees should be assembled into the cavity separately and lubed with the soft vee in the center. Replace the rod wiper in the bushing and reassemble the cylinder.

Piston Seal Replacement

When changing piston seals, extend the piston rod 3" or more if possible, being sure to support the piston rod and the piston at all times. *Remove the tie-rod nuts, blind end cap, the barrel and then the piston seals. A light grease, compatible with the system fluid, should be used on the rings and u-cup seals for smooth assembly. Install the u-cup piston seals, scarf cutting on only the back-up washers. Then install the cast iron rings with the joints in opposite directions. To reassemble, start the piston into the tube, compressing the cast iron rings using twine or a ring compressor. When the piston u-cup seal is to the edge of the barrel, use a thin rounded blade to start the lip of the u-cup, making sure the entire lip is started before moving the piston further into the tube.

*Note: When a cylinder has been disassembled this far, the barrel seals should at least be inspected, if not replaced.

Barrel Seal Replacement

When replacing barrel seals, use the same method of disassembling the cylinder as used when replacing piston seals. The barrel seal is a gasket which is layed into the end cap tube groove first. Then position the end caps squarely on the tube (check to make sure port location is correct), and firmly force or tap the end cap over the tube until it bottoms. Check to make sure the gasket did not move and then finish assembling the cylinder. Series

MN

Series MN

Milwaukee Cylinder Series MN Aluminum Cylinders are

of heavy duty construction in ten bore sizes (1-1/2" up to 12"). Pneumatic operation up to 250 PSI is standard, and 400 PSI hydraulic non-shock operation is available. These high-alloy aluminum pneumatic cylinders are made to order, allowing you to meet the needs of your custom application. Series MN Cylinders are recognized for their durability and long-lasting performance.

		Page
	Standard Specifications and Features	104
General	Series MN Piston Rod End Styles & Base Cylinder Dimensions	105
	Tie-Rod Mount	106
	Flange Mount	107
Mounting Specifications	Side Mount and Lug Mount	108-109
	Trunnion Mount	110
	Clevis and Eye Mount Double Rod End Cylinders	111 112
Basic Options	Basic Option Index Basic Options	113 114-123
Accessories	Clevis, Pins and Mounts Stainless Steel Clevis, Pins and Mounts Switches Switches and Brackets Switch Mounting Switches Hysterises and Band Width Switch Ordering Instructions	124-125 126 127-129 130 131 132 133
Additional Information	Series MN Ordering Information	134

Series MN, Standard Specifications and Features milwaukeelinder

Series H

Series MH

Series LH

Operating Temperature, Buna-N: -20° F to 200° F

Max. Operating Pressure:

250 psi

Operating Temperature, Viton: -15° F to 350° F

FLOATING ROD BUSHING

Self Alignment Feature

Rod Bushing is designed to float .002", improving bearing surface alignment.

CUSTOMER EQUIPMENT

Series MN

 Reduces cylinder drag and erractic operation

CYLINDER CYLINDER ROD BUSHING PISTON

- Reduces cylinder wear
- Provides a minimum of 25% longer life than "fixed" Rod Bushing designs

Piston Wear Band —

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

STANDARD FEATURES

- 1. Floating Rod Bushing
 - Precision machined from 150,000 psi rated graphite filled cast iron and PTFE coated to reduce friction and extend cycle life. Bushing design "traps" lubrication in effective bearing area.
- Head, Cap & Retainer
 Precision machined from high strength
 6061-T6 aluminum alloy. Black anodized
 for corrosion resistance.
- 3. Cylinder Tube

Precision machined from 6063-T6832 high tensile aluminum alloy and hard coat to 60 Rc for wear resistance and extended cycle life.

4. Piston Rod

Precision machined from high yield, polished and hard chrome plated steel.

5. Piston & Rod Seals

Heavy lip design Buna-N Nitrile construction. Seals are pressure activated and wear compensating with PTFE piston wear band for long life. (Self lubricating material).

Rod Wiper

6.

Abrasion resistant urethane provides aggressive wiping action in all environments. External lip design prevents debris from entering cylinder.

7. Piston

Precision machined from 6061-T651 alloy aluminum, provides an excellent bearing surface for extended cylinder life.

8. Tie Rods

Prestressed high carbon steel tie rod construction eliminates axial loading of cylinder tube and maintains compression on tube and end seals.

9. Permanent Lubrication

Permanently lubricated with PTFE based grease on all internal components. This is a non-migratory type high performance grease providing outstanding service life. No additional lubrication is required.

10. Cushions

(Options H & C) Floating cushion seal designed for maximum cushion performance, quick return stroke breakaway and extended life.

11. Cushion Adjustment Needle

Adjustable steel needle design has fine thread metering and is positively captured to prevent needle ejection during adjustment.

12. Piston Magnet

(Option MPR/MPH - see page 120) for *Milwaukee Cylinder* magnetically operated Reed and Solid State switches (refer to pages 127-133).

PERFORMANCE OPTIONS

ST – Stop Tubes are used to reduce rod bearing and piston stress (refer to page 108 for cylinder design guidance).

MA – Micro-Adjust provides a precision adjustment on the cylinder extend stroke, providing quick and accurate cylinder positioning, reducing set-up time.

SSA – Stainless Steel Piston Rod, Tie Rods, Nuts, and Fasteners provide corrosion resistance in outdoor applications and wet environments.

LF – Low Friction Seals reduce breakaway and running friction. Effective at all operating pressures.

 ${\bf NR}$ – Non-Rotating option incorporates (2) internal guide rods preventing rod rotation (NFPA dimensions).
ABOUT ROD END STYLES

Style KK1 Male Rod End is STANDARD. (If no rod style is specified, it will be supplied with KK1). Other NFPA Styles can be specified (See Chart).

Need a rod end not listed? NO PROBLEM! Each Piston Rod is made to order and does not delay shipment. Coarse (UNC) threads, metric threads or just plain rod ends are common. Thread lengths are also made to order (Specify: "A"= Length).

NEED SOMETHING NOT LISTED? Contact the factory to discuss your custom requirements.

BORE	ROD	STAND	ARD	ΟΡΤΙΟΙ	NAL	OPTIO	NAL	ΟΡΤΙΟ	NAL	OPTIONAL	С	v
	ММ	KK1	Α	KK2	Α	ККЗ	Α	KK4	Α	KK5		
1½, 2, 2½	⁵ ⁄8	⁷ ⁄ ₁₆ -20	³ ⁄4	½-20	³ ⁄4	⁷ ⁄ ₁₆ -20	³ ⁄4	⁵⁄≋-18	³ ⁄4	No	3⁄8	1/4
	1	³ ⁄4-16	11⁄8	7∕8-14	11⁄8	³ ⁄4-16	11⁄8	1-14	11⁄8	Threads	1⁄2	1/2
3¼, 4, 5	1	³ ⁄4-16	11⁄8	7⁄8-14	11⁄8	³ ⁄4-16	11⁄8	1-14	11⁄8	No	1⁄2	1/4
	1¾	1-14	15⁄8	11∕4-12	15⁄8	1-14	15⁄8	1¾-12	15⁄8	Threads	5⁄8	3⁄8
6 & 8	1¾	1-14	15⁄8	11⁄4-12	15⁄8	1-14	15⁄8	1¾-12	15⁄8	No	5⁄8	3⁄8
	1¾	1¼-12	2	11⁄2-12	2	1¼-12	2	1¾-12	2	Threads	3⁄4	1⁄2
10	1¾	11⁄4-12	2	1½-12	2	11⁄4-12	2	1¾-12	2	No	3⁄4	1⁄2
	2	11⁄2-12	21⁄4	1¾-12	21⁄4	11⁄2-12	21⁄4	2-12	21⁄4	Threads	7⁄8	3⁄8
12	2	1½-12	2¼	1¾-12	21⁄4	1½-12	2¼	2-12	2¼	No	⁷ ⁄8	3⁄8
	2½	17⁄8-12	3	2¼-12	3	17⁄8-12	3	2½-12	3	Threads	1	1⁄2

BASIC CYLINDER MODEL MN11 NFPA STYLE MX0 (No mount)

Bore Ø	Rod MM	Cylinder Code	A	В	С	E	EE	F	G	J	K	KK	LB	Р	R	RM	V	Y	ZB
1 ½	5⁄8	MN00611	3⁄4	11/8	3⁄8	2	3⁄8	3⁄8	1½	1	1⁄4	7⁄16-20	35⁄8	23⁄8	1.43	2 Sq.	1⁄4	11⁄/8	41⁄8
1 72	1	MN00612	11/8	11/2	1⁄2	2	98	98	1 72	1	74	3⁄4-16	3%8	298	1.43	2 SY.	1/2	21⁄4	51⁄4
2	5⁄8	MN06110	3⁄4	11/8	3⁄8	21/2	3/8	3/8	1½	1	5/16	7⁄16-20	35⁄8	23/8	1.84	1¾ Hex	1⁄4	11⁄/8	415/16
2	1	MN06111	11/8	11/2	1⁄2	272	78	78	172	'	716	3⁄4-16	378	278	1.04	21⁄2 Sq.	1/2	21⁄4	55⁄16
2 ½	5⁄8	MN06120	3⁄4	11/8	3⁄8	3	3/8	3/8	1½	1	5⁄16	7⁄16-20	3¾	21/2	2.19	1¾ Hex	1⁄4	11 %	5½16
∠72	1	MN06121	11/8	1½	1/2	3	98	98	1 72	1	916	3⁄4-16	3%4	272	2.19	3 Sq.	1/2	21⁄4	57/16
3 ¼	1	MN06130	11/8	1½	1⁄2	33⁄4	1/2	5/8	13⁄4	11/4	3/8	3⁄4-16	4¼	23⁄4	2.76	2¾ Dia.	1⁄4	23⁄8	6
374	13⁄8	MN06131	15⁄8	2	5⁄8	374	72	98	194	174	78	1-14	474	294	2.70	3¾ Sq.	3⁄8	25⁄8	6¼
4	1	MN06140	11/8	1½	1⁄2	41/2	1/2	5/8	1¾	11/4	3/8	3⁄4-16	4¼	23⁄4	3.32	2¾ Dia.	1⁄4	23⁄8	6
4	13⁄8	MN06141	15⁄8	2	5⁄8	472	72	78	174	174	78	1-14	474	274	0.02	3½ Dia.	3⁄8	25⁄8	6¼
5	1	MN06150	11/8	1½	1⁄2	5½	1/2	5/8	1¾	11/4	7/16	3⁄4-16	41/2	3	4.10	2¾ Dia.	1⁄4	23⁄8	65⁄16
5	13⁄8	MN06151	15⁄8	2	5⁄8	372	72	78	174	174	/10	1-14	472	5	4.10	3½ Dia.	3⁄8	25⁄8	6%16
6	13⁄8	MN06160	15⁄8	2	5⁄8	6½	3⁄4	5/8	2	1½	7/16	1-14	5	31⁄4	4.88	3½ Dia.	3⁄8	23⁄4	7½16
Ŭ	13⁄4	MN06161	2	23⁄8	3⁄4	072	74	78	2	172	/10	11⁄4-12	5	374	4.00	072 Dia.	1⁄2	3	75⁄16
8	13⁄8	MN06180	1 5/8	2	5⁄8	8½	3⁄4	5/8	2	1½	9⁄16	1-14	51/8	33/8	6.44	3½ Dia.	3⁄8	2¾	75⁄16
0	13⁄4	MN06181	2	23⁄8	3⁄4	072	74	78	2	172	, 10	11⁄4-12	J 78	378	0.44	072 Dia.	1⁄2	3	7%16
10	13⁄4	MN61100	2	23⁄8	3⁄4	105%	1	5⁄8	21⁄4	2	11/16	11⁄4-12	63/8	45⁄16	7.92	3½ Dia.	1⁄2	31⁄16	815/16
10	2	MN61101	21⁄4	25⁄8	7⁄8	1078	I	3⁄4	274	2	. 10	1½-12	078	+ /16	1.92	5 Dia.	3⁄8	33⁄16	9½16
12	2	MN61200	21⁄4	25⁄8	7⁄8	12¾	-1	3/4	21⁄4	2	11/16	11⁄2-12	67⁄8	4 ¹³ ⁄16	9.40	5 Dia.	3⁄8	33⁄16	9%16
12	21/2	MN61201	3	31/8	1	1294	I	-74	274	2		11/8-12	0./8	4.916	9.40	o Dia.	1/2	37/16	913/16

PISTON ROD END STYLES

MM ROD DIA.

STYLE KK1 & KK2

STYLE KK3

(STYLE 1)

KK3 (STYLE 3) MM ROD

С

MM ROD DIA KK4 (STYLE 4)

STYLE KK4

STYLE KK5

KK5 (STYLE 5)

С

٧

KK2 (STYLE 2)

С

С

MM ROD DIA.

v

Manipulators

Power Units/Valves

Design Guide

TIE ROD MOUNTED CYLINDERS

Tie-rod mounts are suited for many applications and are similar to flange mounts, but tie-rod mounts are not as rigid as the flange type of mounting. The best use of tie-rods extended on the blind end is in a thrust load application. When using tie-rod extended on the rod end, the best application is a tension load. When long strokes are required, the free end should be supported to prevent misalignment, sagging or possible binding of the cylinder.

MX1 and MX3 have full square bushing retainer on 11/2" - 6" bores, round retainers on 8"-12" bores. ** BB dimensions from face of head. For dimensions not shown, see page 105.

For dimensions not shown, see page 105.

FLANGE MOUNTED CYLINDERS

The flange mount is one of the strongest, most rigid methods of mounting. With this type of mount there is little allowance for misalignment, though when long strokes are required, the free end opposite the mounting should be supported to prevent sagging and possible binding of the cylinder. The best use of a blind end flange is in a thrust load application (rod in compression).

Rod end flange mounts are best used in tension applications.

When a less rigid mount can be used and the cylinder can be attached to a panel or bulkheard, an extended tie-rod mounting could be considered.

Manipulators

Power Units/Valves

For ordering information refer to Page 134.

NOTES:

- For double rod end cylinders, add prefix letter D to cylinder code. Example: DMN00611. (Refer to page 112.)
- * Models MN31 and MN32 not available in these sizes.
- ** Models MN21 and MN22 not available in these sizes.

ndph

HOW TO ORDER

For ordering information refer to Page 134.

NOTES:

 For double rod end cylinders, add prefix letter D to cylinder code. Example: DMN00611. (Refer to page 112.)

MODEL MN44 NFPA STYLE MS1

SIDE OR LUG MOUNTED CYLINDERS

The side or lug mounted cylinder provides a fairly rigid mount. These types of cylinders can tolerate a slight amount of misalignment when the cylinder is at full stroke, but as the piston moves toward the blind end, the tolerance for misalignment decreases. It is important to note that if the cylinder is used properly (without misalignment), the mounting bolts are either in simple shear or tension without any compound stresses.

			'MI	N44' AN(GLE MOU		ENSIONS	\$			
Bore	Rod	Cylinder	AB	AH	AL	AO	AT	FH	S	Add S	Stroke
Ø	мм	Code ♦								SA▲	XA
1½	5⁄8	MN00611	7⁄16	13/16	1	3/8	1/8	3/8	11⁄4	6	55⁄8
172	1	MN00612	716	1716	'	78	78	78	174	0	6
2	5⁄8	MN06110	7⁄16	17/16	1	3/8	1/8	3/8	13⁄4	6	55⁄8
~	1	MN06111	716	1716	'	78	78	78	174	0	6
2 ¹ / ₂	5⁄8	MN06120	7⁄16	1%	1	3/8	1/8	3/8	21⁄4	61⁄8	53⁄4
212	1	MN06121	716	178	1	78	78	78	∠74	078	61⁄8
31⁄4	1	MN06130	9⁄16	1 ¹⁵ /16	11/4	1/2	1/8	5/8	23⁄4	73⁄8	61/8
374	13/8	MN06131	916	I '916	174	/2	78	98	294	1 %8	71⁄8
4	1	MN06140	9⁄16	21⁄4	11/4	1/2	1/8	5/8	3½	73⁄8	67⁄8
4	13⁄8	MN06141	716	274	174	72	78	78	372	178	71⁄8
5	1	MN06150	11/16	23⁄4	1%	5/8	3⁄16	5/8	41⁄4	71/8	71⁄4
3	13%	MN06151	. 716	∠74	178	78	716	78	474	1 78	71⁄2
6	1¾	MN06160	¹³ /16	3¼	1%	5/8	³ ⁄16	3/4	51⁄4	8½	8
U	1 ¾	MN06161	.716	374	178	-78	716	94	574	0 /2	81⁄4
8	1%	MN06180	13/16	41/.	1 13/-	11/	1/4	5/*	71/	03/	8%16
•	13⁄4	MN06181	/10	41⁄4	1 ¹³ ⁄16	11/16	1/4	5⁄8*	71⁄8	8¾	813/16

 $^{*}3\%"$ diameter round retainer on 8" bore. (MA1 bracket bolted directly to head) For dimensions not shown, see page 105.

▲ For Double Rod End, add 1/2" + FH to this dimension.

Page 105 MilCad Cylinder

Configurator

see:

Rod End Styles and Dimensions For rod end styles and dimensions

Visit **milwaukeecylinder.com** to configure and download CAD files of your cylinders.

Series A

Side Mount and Lug Mount Dimensional Data

SIDE LUG MOUNTING

MODEL MN42 NFPA STYLE MS2

Bore	Rod	Cylinder	SB	SH	ST	SU	sw	SZ	TS	US	XS	Add Stroke	
Ø	MM	Code 🔶										SS*	
1½	5⁄8	MN00611	7⁄16	1	1/2	11/8	3/8	5/8	23⁄4	3½	1¾	27/8	
1 72	1	MN00612	716	1	72	178	78	78	274	572	13⁄4	278	
2	5⁄8	MN06110	7/16	11/4	1/2	11/8	3/8	5/8	31⁄4	4	13⁄8	21/8	
-	1	MN06111	716	174	72	178	78	78	074	4	13⁄4	278	
2 ½	5⁄8	MN06120	7⁄16	1½	1/2	11/8	3/8	5/8	3¾	4½	13⁄8	3	
2/2	1	MN06121	716	172	72	178	78	78	374	472	13⁄4	3	
3 ¼	1	MN06130	9⁄16	1%	3/4	11/4	1/2	3/4	43⁄4	5¾	11 //8	31⁄4	
J 74	13⁄8	MN06131	716	178	74	174	72	74	474	J 74	21⁄8	374	
4	1	MN06140	9⁄16	21⁄4	3/4	11/4	1/2	3/4	5½	6½	11 %	31⁄4	
-	13⁄8	MN06141	716	274	74	174	72	74	J72	072	21⁄8	574	
5	1	MN06150	¹³ /16	23⁄4	1	11/16	11/16	^{9/16}	67⁄8	81/4	21/16	31⁄8	
5	13⁄8	MN06151	'916	294	1	I 716	' 16	9/16	078	074	25/16	378	
6	1%	MN06160	13/16	31⁄4	1	15/16	11/16	¹³ /16	71/8	91⁄4	25/16	35%	
0	1¾	MN06161	.7/16	374	1	17/16	. 716	.7/16	1 1/8	374	2%16	3%8	
8	1%	MN06180	13/16	41⁄4	1	15/16	11/16	¹³ /16	97⁄8	4.41/.	25/16	03/	
0	13⁄4	MN06181	, 10	4 74	1	1 9/16	' 16	'9/16	9'/8	111⁄4	2%16	6 33⁄4	

SB DIA. (4)

ST

HOW TO ORDER

For ordering information refer to Page 134.

-sw

NOTES:

SN + STROKE

Ľ

XT

- For double rod end cylinders, add prefix letter D to cylinder code. Example: DMN00611. (Refer to page 112.) Double rod ends are not available on clevis mount Series MN cylinders.
- * For Double Rod End Cylinders add 1/2" to this dimension.

Ľ.,...

TAPPED HOLES IN CAPS FLUSH MOUNTING $\langle \Phi \rangle$. F/2 (4) NT TAP, TK DEEP ← TN →

	'MN41' TAPPED HOLE MOUNT DIMENSIONS											
Bore Ø	Rod MM	Cylinder Code ♦	E/2	NT	тк	TN	ХТ	Add Stroke SN				
1 ½	5% 1	MN00611 MN00612	1	1⁄4-20	3⁄8	5⁄/8	1 ¹⁵ ⁄16 2 ⁵ ⁄16	21⁄4				
2	⁵ ⁄8 1	MN06110 MN06111	1¼	⁵⁄16 -18	1/2	7/8	1 ¹⁵ ⁄16 2 ⁵ ⁄16	21⁄4				
2 ½	5⁄8 1	MN06120 MN06121	1½	³ %-16	5⁄8	11⁄4	1 ¹⁵ ⁄16 2 ⁵ ⁄16	23⁄8				
3¼	1 1¾	MN06130 MN06131	17⁄8	1⁄2-13	3⁄4	1½	27/16 2 ^{11/} 16	25⁄8				
4	1 1¾	MN06140 MN06141	2¼	1⁄2-13	3⁄4	21⁄16	2 ⁷ /16 2 ¹¹ /16	25⁄8				
5	1 13⁄8	MN06150 MN06151	2¾	⁵% -11	1	211/16	27/16 2 ¹¹ /16	27⁄8				
6	13/8 13/4	MN06160 MN06161	3¼	³ ⁄4-10	11/8	31⁄4	2 ¹³ /16 3 ¹ /16	31⁄8				
8	13/8 13/4	MN06180 MN06181	4¼	³ ⁄4-10	11⁄8	41⁄2	2 ¹³ /16 3 ¹ /16	31⁄4				
10	1¾ 2	MN61100 MN61101	55⁄16	1-8	1½	5½	31/8 31/4	41⁄8				
12	2 2½	MN61200 MN61201	6¾	1-8	1½	71⁄4	31⁄4 31⁄2	45⁄8				

Rod End Styles and Dimensions For rod end styles and dimensions see:

Page 105 MilCad Cylinder

linder

Configurator

Visit milwaukeecylinder.com to configure and download CAD files of your cylinders.

milwauke

Series MN

Power Units/Valves

109

For dimensions not shown, see page 105.

milwaukée

NOTE:

MT1 and MT2 trunnions are bolt on, non-removable design.

MODEL MN72

TRUNNION CYLINDERS

All trunnion cylinders need a provision on both ends for pivoting. These types of cylinders are designed to carry shear loads and the trunnion pins should be carried by bearings that are rigidly held and closely fit for the entire length of the pin.

Hard chrome plated O.D. wear surface on trunnions ⊕ **NFPA STYLE MT2**

'MN71' AND 'MN72' TRUNNION MOUNT DIMENSIONS ACCESSORIES (see pages 110-111 for dimensions) Bore Rod Cylinder Е TD TL UT XG Add Stroke Rod Clevis Rod Eye **Clevis Pin** Code ♦ MM Ø XJ 5⁄8 MN00611 13/4 41/8 RC437 RE437 CP500 11/2* 2 1 1 4 1 MN00612 N/A^{*} 41⁄2 RC750 **RE750** CP750 5/8 MN06110 13/4 41⁄8 RC437 **RE437** CP500 2 21/2 1 1 41/2 1 MN06111 21⁄8 41⁄2 RC750 **RE750** CP750 5⁄8 MN06120 13/4 41/4 RC437 **RF437** CP500 **2**¹/₂ 3 1 1 5 1 MN06121 21/8 45⁄8 RC750 **RE750** CP750 1 MN06130 21/4 5 RC750 **RE750** CP750 31/4 33/4 1 1 53/4 13⁄8 MN06131 21/2 51/4 RC1000 RE1000 CP1000 1 MN06140 21/4 5 **RC750 RE750** CP750 4 41/2 1 1 61/2 13/8 CP1000 MN06141 21/2 51/4 RC1000 **RE1000** 21/4 51/4 **RC750 RE750** CP750 1 MN06150 5 51/2 1 1 71/2 13/8 21/2 51/2 RC1000 **RE1000** CP1000 MN06151 13/8 25/8 RC1000 RE1000 CP1000 MN06160 57/8 6 61/2 13⁄8 13% 91/4 13/4 RC1250 RE1250 CP1375 MN06161 21/8 61/8 13/8 MN06180 25% 6 RC1000 RE1000 CP1000 8 81/2 1% 13/8 111/4 13⁄4 MN06181 27/8 61/4 RC12505 RE1250 CP1375

*No oversize rod available on 11/2" bore MT1. For dimensions not shown, see page 105.

NOTE: MT4 Trunnions and Intermediate section are one-piece steel construction.

CENTER TRUNNION MOUNT

+ 000

HOW TO ORDER

For ordering information refer to Page 134.

MODEL MN74

NFPA STYLE MT4

NOTES:

♦ For double rod end cylinders, add prefix letter D to cylinder code. Example: DMN00611. (Refer to page 112.)

	'MN7	4' CENTE	R TRUNNI		T DIMENS	SIONS	
Bore Ø	BD	EB	TD	TL	ТМ	UM	X1
1½	11⁄4	21⁄2	1	1	21⁄2	41⁄2	≻
2	1½	3	1	1	3	5	UH UH
2 ½	1½	31⁄2	1	1	31⁄2	5½	SPECIFY
31⁄4	2	41⁄4	1	1	41⁄2	6½	
4	2	5	1	1	51⁄4	71⁄4	Ë
5	2	6	1	1	6¼	81⁄4	NO
6	2	7	13⁄8	13⁄8	75⁄8	10%	CUSTOMER TO
8	21⁄2	9½	13⁄8	13⁄8	93⁄4	12½	ರ

 (\oplus)

www.milwaukeecylinder.com

Series MH

Dimensional Data Clevis and Eye Mount

 12
 2
 MN61200
 2½
 1¾
 1¼
 N/A

 Clevis pins are provided with pivot mounts.

For dimensions not shown, see page 105.

**Extruded MP1 mounts are standard (1½" - 8" bores). Cast Iron removable mounts are optional, and must be requested when ordering (1½" - 6" bores). Specify "CAST MP1" when ordering.

RE1500

N/A

CP1750

CP2000

EB1750

RC1500

RC1875

111/8

11%

13/4

21/4

N⁄A

CB1750

Hyd-Pneu Devices

Manipulators

S

Design Guide

Series MN, Double Rod End

milwaukee

Rod End Styles and Dimensions For rod end styles and dimensions

Page

see:

DOUBLE ROD END CYLINDERS

- Standard and oversize piston rods available
- Full range of standard options
- Durable design. Full rod bearing at each end of cylinder
- Can be provided with hollow piston rods (gun-drilled through, to your size requirements)
- Can be used in adjustable extend stroke applications (by adding a stop collar on one rod end, or option "MA" Refer to page 119).

105

Bore Ø	Rod MM	Cylinder Code	Α	В	С	E	EE	F	G	К	КК	LD	Р	R	RM	V	Y	ZM
1 ½	5⁄8	DMN00611	3⁄4	11⁄8	3⁄8	2	3/8	3/8	1½	1/4	7⁄16-20	4½	23/8	1.43	2 Sq.	1⁄4	11⁄/8	61⁄/8
1 /2	1	DMN00612	11/8	1½	1⁄2	2	78	78	1/2	/4	³ ⁄4-16	478	2/8	1.40	2 04.	1⁄2	21⁄4	61/8
2	5⁄8	DMN06110	3⁄4	11/8	3⁄8	21/2	3/8	3/8	1½	5/16	7⁄16-20	41⁄8	23/8	1.84	1¾ Hex	1⁄4	11 %	61⁄/8
2	1	DMN06111	11/8	1½	1⁄2	272	78	78	172	716	3⁄4-16	478	278	1.04	21⁄2 Sq.	1⁄2	21⁄4	61/8
2 ½	5⁄8	DMN06120	3⁄4	11/8	3⁄8	3	3/8	3/8	1½	5/16	⁷ ⁄16-20	4¼	21/2	2.19	1¾ Hex	1⁄4	11 %	6¼
2/2	1	DMN06121	11/8	1½	1⁄2	5	78	78	1/2	7 16	³ ⁄4-16	4/4	2/2	2.13	3 Sq.	1⁄2	21⁄4	7
3 ¼	1	DMN06130	11/8	1½	1⁄2	3¾	1/2	5/8	13⁄4	3⁄8	3⁄4-16	43⁄4	23⁄4	2.76	2¾ Dia.	1⁄4	23⁄8	7½
J /4	13⁄8	DMN06131	15⁄8	2	5⁄8	074	/2	78	174	/8	1-14	474	2/4	2.70	3¾ Sq.	3⁄8	25⁄8	8
4	1	DMN06140	11/8	1½	1⁄2	41/2	1/2	5/8	1¾	3⁄8	³ ⁄4-16	43⁄4	23⁄4	3.32	2¾ Dia.	1⁄4	23⁄8	71⁄2
-	13⁄8	DMN06141	15⁄8	2	5⁄8	472	/2	78	174	/8	1-14	474	2/4	0.02	3½ Dia.	3⁄8	25⁄8	8
5	1	DMN06150	11/8	1½	1⁄2	51/2	1/2	5/8	13⁄4	7/16	³ ⁄4-16	5	3	4.10	2¾ Dia.	1⁄4	23⁄8	7¾
Ŭ	13⁄8	DMN06151	1 %	2	5⁄8	0/2	12	78	174	, 10	1-14	5		4.10	3½ Dia.	3⁄8	25⁄8	81⁄4
6	13⁄8	DMN06160	1%	2	5⁄8	6½	3/4	5/8	2	7/16	1-14	5½	31⁄4	4.88	3½ Dia.	3⁄8	23⁄4	8¾
0	13⁄4	DMN06161	2	23⁄8	3⁄4	072	74	70	2	, 10	11⁄4-12	5/2	071	4.00	072 Dia.	1⁄2	3	91⁄4
8	13⁄8	DMN06180	1%	2	5⁄8	81⁄2	3⁄4	5/8	2	^{9/} 16	1-14	5%	3%	6.44	3½ Dia.	3⁄8	23⁄4	81/8
0	13⁄4	DMN06181	2	23⁄8	3⁄4	072	74	70	2		11⁄4-12	5%	0,0	0.77	072 Dia.	1⁄2	3	93⁄8
10	13⁄4	DMN61100	2	23⁄8	3⁄4	10%	1	5⁄8	21⁄4	11/16	11⁄4-12	65⁄8	45⁄16	7.92	3½ Dia.	1⁄2	31⁄16	10¾
10	2	DMN61101	21⁄4	25⁄8	7⁄8	1078	1	3⁄4	2/4		1½-12	070	.,	1.52	5 Dia.	3⁄8	33⁄16	105⁄/8
12	2	DMN61200	21⁄4	25⁄8	7⁄8	12¾	1	3⁄4	21⁄4	11/16	1½-12	71⁄8	4 ¹³ /16	9.40	5 Dia.	3⁄8	33⁄16	111⁄/8
14	21⁄2	DMN61201	3	31⁄8	1	12/4	1	/4	£/4		1%-12	1/0	1 / 10	5.40	5 Dia.	1⁄2	37⁄16	115⁄8

Double Rod End Stroke Adders

Bore	Rod	MS	61D	MS2D
Ø	MM	SAD	XAD	SSD
1½	5⁄8	67⁄8	61⁄2	33/8
1/2	1	078	61/8	0/8
2	5⁄8	67/8	61⁄2	33/8
-	1	078	61/8	0/8
2 ¹ / ₂	5⁄8	7	65⁄8	31/2
Z /2	1	'	7	072
31⁄4	1	81/2	8	33⁄4
074	13⁄8	072	81⁄4	0/4
4	1	81/2	8	3¾
-	13⁄8	072	81⁄4	074
5	1	9	83⁄8	35/8
5	13⁄8	5	85⁄8	0/0
6	13⁄8	93⁄4	91⁄4	41/8
0	13⁄4	374	91⁄2	7/8
8	13⁄8	91⁄4	91⁄16	41⁄4
3	13⁄4	374	95/16	+ 74

Series H

Series LH

Basic Option Index

INDEX TO BASIC OPTIONS

CODE	DESCRIPTION	
A=	EXTENDED PISTON ROD THREAD	114
A/O		114
AS	Adjustable Stroke (Retract)	114
B, BC, BH	BUMPERS	114
BP	BUMPER PISTON SEALS	115
H, C, LH, LC, ELH, ELC	CUSHIONS	116
ELH, ELC	DIMENSIONS FOR EXTRA LONG CUSHIONS	117
	CUSTOM LENGTH CUSHIONS	117
BSPT/BSPP	BRITISH STANDARD PIPE THREADS	118
C=		118
EN	ELECTROLESS NICKEL	118
KK3S	STUDDED PISTON ROD	118
LF	Low Friction	118
МА	Mixcro-Adjust	119
МАВ	MICRO-ADJUST WITH URETHANE BUMPER	119
MPR, MPH	MAGNETIC PISTON	120
MS	Metallic Rod Scraper	120
NR	Non-Rotating (NFPA) Cylinders	120
OP	OPTIONAL PORT LOCATION	121
	OPTIONAL PORT & CUSHION AT SAME LOCATION	121
OS		121
SAE	SAE "O-RING" Boss Ports	121
SSA	STAINLESS STEEL "ALL"	122
SSF	STAINLESS STEEL FASTENERS	122
SSR	STAINLESS STEEL PISTON ROD	122
SST	STAINLESS STEEL TIE RODS & NUTS	122
ST	Stop Tube	122
тн	400 PSI Hydraulic (NON SHOCK)	123
VS	VITON	123
		120

Design Guide

EXTENDED PISTON ROD THREAD

"A=" Refers to the length of piston rod thread Shorter than standard lengths can be furnished at no charge. Longer than standard lengths can be furnished at nominal price adder. *Special length threads available.*

A/O

AIR/OIL PISTON

Air/Oil pistons allow for the combination of pneumatic supply air with the precise control of oil.

The basic A/O piston is designed for oil on the cylinder cap end, and a "meter out" flow control (not provided) for precise return stroke control.

For applications that require the oil to be on the cylinder rod end, specify the TH option.

NOTE: Due to the nature of oil to remain in the tubing finish recesses, a condition called "collaring" will allow oil to seep past the A/O seal over time, escaping in the air valve exhaust.

ADJUSTABLE STROKE (RETRACT)

BUMPERS

Consists of a threaded rod in the cylinder cap, non-removable. Provides an adjustable positive stop on the cylinder retract. *To order, specify* "*AS*" *and length of adjustment (Example: AS=3*").

B, BC, BH

not allow for standard cushions. **BC** = Cap Bumper **BH** = Head Bumper **B** = Head and Cap Bumper (*NOTE: Each bumper adds 1/4" to cylinder length*).

Urethane impact dampening bumpers, used when cylinder speeds do

Series LH

Series H

MN Basic Options: BP

Standard Material: Buna-N

-20° F to 200° F

-150° F to 350° F

Optional Material: Viton

Operating Temperature:

Operating Temperature:

Operating Pressure: 250 PSI Air

BUMPER PISTON SEALS

Milwaukee Cylinder's Bumper Piston Seal, when used with our advanced cushion design, decelerates the cylinder at end of stroke — reducing noise and extending cylinder life.

1½" Bore Shown

BENEFITS

BP

Reduces cycle rates
 Higher piston velocities ca

Higher piston velocities can be achieved due to rapid deceleration feature increasing productivity

- Provides maximum impacf dampening Reduces machine vibration
- Reduces cylinder end-of-stroke noise
- Available in Viton Seals (1¹/₂" to 8" bore)

Available on 11/2" - 8" Bore

DESIGN TIPS

- Use cushions to achieve quick performace on longer strokes (Options HC & BP)
- Use the BP Seals without cushions on short strokes requiring fast cycles
- Due to compressibility, BP Seals are not recommended for applications that require 100% repeatable stroke increments

Bumper Piston Seals will shorten the cylinder stroke when operated at less than 90 PSI supply air. The charts below show the approximate (average) stroke reduction, at various pressure (for new cylinders). As the cylinders are cycled, the seals will take a slight set. Tests have shown that after 1,500,000 cycles, the seals will have between .001" and .008" compression set per seal. After that, there is no noticeable compression set.

тот/	AL STROK	E REDUC	TION ("A"	Dimensior	1 X 2) (in in	ches)
Bore Ø	0 PSI	10 PSI	30 PSI	50 PSI	70 PSI	90 PSI
1½	.10	.09	.07	.06	.04	.00
2	.14	.11	.07	.04	.01	.00
2 ½	.18	.14	.08	.05	.02	.00
31⁄4	.14	.12	.08	.04	.01	.00
4	.17	.14	.09	.05	.02	.00
5	.18	.14	.07	.03	.01	.00
6	.23	.18	.10	.05	.01	.00
8	.31	.26	.15	.07	.03	.00

PER	END STR	OKE RED	UCTION ("	A" Dimen	sion) (in ind	ches)
Bore Ø	0 PSI	10 PSI	30 PSI	50 PSI	70 PSI	90 PSI
1½	.048	.043	.035	.028	.021	.00
2	.069	.056	.037	.020	.010	.00
2 ½	.091	.070	.042	.024	.008	.00
31⁄4	.071	.059	.039	.020	.002	.00
4	.087	.069	.045	.026	.009	.00
5	.092	.072	.036	.013	.005	.00
6	.113	.091	.051	.023	.003	.00
8	.154	.132	.076	.037	.016	.00

www.milwaukeecylinder.com

milwaukée Ylinder

Hyd-Pneu Devices ŝ Accessories

Series MN

Design Guide

HEAD AND CAP CUSHIONS

without the use of ball checks.

to float in a precision machined groove.

Seal Design

Front Side

Back Side

н LH LONG HEAD CUSHION

HEAD CUSHIONS

STANDARD LENGTH HEAD CUSHION

ELH **EXTRA LONG HEAD CUSHION***

* Extra Long Head add length to cylinder. Refer to page 117 for details.*

CAP CUSHIONS

Refer to page 117 for details.*

HOW TO SIZE CUSHIONS FOR YOUR APPLICATION

Cylinders with air cushions provide a possible solution to destructive energies. The air cushion traps a small amount of exhaust air at the end of stroke, providing an air pocket that decelerates the load. This reduces the potentially destructive energy being transmitted to the cylinder and other components. The following is a brief explanation on how to determine the energy level of your application and determine if an air cushion can provide adequate energy absorption. Air cushions do not build heat since the heat generated is dissipated with the exhausted air flow.

Milwaukee Cylinder's advanced cushion design features a unique, one piece seal that is allowed

This type of seal design provides consistent cushion performance and maximum seal life. Oversized flow paths molded in the periphery of the seal provide "full flow" on the return stroke

- STEP 1: Determine the total load to be stopped by the cylinder. Include the piston rod weight (see piston rod weight chart below).
- STEP 2: Determine the velocity (in feet per second) at which the load impacts the cylinder end caps.
- STEP 3: Use the following formula to calculate the energy the cylinder generates.
- STEP 4: Using the table below, select the proper cushion length. Note: You can choose a larger bore size to increase cushion capacities.

CUSHION SIZING FORMULA

Milwaukee Cylinder's advanced cushion design features a unique, one piece seal that is allowed to float in a precision machined groove. Sizing Example:

energy = $(w x v^2) + (p x k)$ 64

- W = Total weight of load in pounds (including piston rod)
- = Velocity (in feet per second)
- Р = Driving pressure in PSI
- (usually the air line pressure) K = Bore constant value (see chart below for "K" values)

How to figure the energy for a 21/2" bore cylinder, 10" stroke, 5/8" piston rod, moving a 25 lb. load at 6 feet per second with 80 psi air.

P = 80 psi W = 26.25 lbs. V = 6 FPS. K = .17 Energy = (26.25/64) X (62) or (36) + (80 X .17) Energy = 28.36 ft/lbs.

The Maximum Energy Data Chart indicates that the "Long" Cushion at 38.6 maximum energy value would be the right choice for this application.

		MAXI	MUM ENERGY DATA	
Bore Ø	К	H OR C Standard Cushion Series Max Energy (ft-lbs)	LH OR LC Long Cushion Series Max Energy (ft-Ibs)	ELH OR ELC Extra-Long Cushion Series Max Energy (ft-Ibs)
1 ½	.06	8.2	12.8	26.9
2	.11	13.8	21.7	45.8
2 ½	.17	24.6	38.6	81.5
3 ¼	.25	45.7	83.6	172.2
4	.38	57.3	137.1	282.6
5	.59	94.6	226.0	465.8
6	1.37	225.5	334.4	767.6
8	2.43	411.3	609.8	1399.8
10	3.79	379.4	621.4	1620.9
12	5.47	554.8	908.8	2370.6

Design Tips

 Cushions Adjustment screws can be ordered on same side as ports. Refer to page 121 for details.

BP Seals provide additional impact dampening and noise reduction. (Refer to page 145 for details).

Piston Rod Weight Chart Rod **Piston Rod Weight*** MM 5/8 .35 lb. + .09 lb/in of stroke 1 1.1 lb. + .22 lb/in of stroke 13⁄8 2.3 lb. + .42 lb/in of stroke 13/4 5.0 lb. + .68 lb/in of stroke 2 6.1 lb. + .88 lb/in of stroke 2¹/₂ 10.4 lb. + 1.39 lb/in of stroke ^{*} Double weight for double rod end cylinders.

Series A

Series H

Series MH

EXTRA LONG CUSHIONS

Milwaukee Cylinder's "ELH" Extra-Long Head Cushions and "ELC" Extra-Long Cap Cushions add length to the cylinder. Refer to the chart for dimensions.

(MN41-1½" X 6" ELH - EN) Shown

Bore Ø	Rod MM	Cylinder Code	A	В	С	E	EE	F	G	J	К	KK	LBX	РХ	R	RM	V	Y	ZBX
1½	5⁄8	DMN00611	3⁄4	11/8	3⁄8	2	3⁄8	3/8	1½	1	1/4	7⁄16-20	5%	43⁄8	1.43	2 Sg.	1⁄4	11⁄/8	67⁄8
1/2	N/A	DMN00612	N/A	N/A	N/A	2	/0	/0	1/2		/4	N/A	0/0	7/0	1.40	2 09.	N/A	N/A	N/A
2	5⁄8	DMN06110	3⁄4	11/8	3⁄8	21/2	3/8	3/8	1½	1	5/16	7⁄16-20	55/8	43/8	1.84	1¾ Hex	1⁄4	11 %	615/16
2	1	DMN06111	11⁄8	1½	1⁄2	2/2	78	78	/0 1/2	1	710	³ ⁄4 -1 6	J78	478	1.04	21⁄2 Sq.	1⁄2	21⁄4	75⁄16
2 ½	5⁄8	DMN06120	3⁄4	11/8	3⁄8	3	3/8	3/8	1½	1	5/16	7⁄16-20	5¾	4½	2.19	1¾ Hex	1⁄4	11 %	71⁄16
2/2	1	DMN06121	11/8	11/2	1⁄2	3	78	78	172	'	716	³ ⁄4 -1 6	J74	472	2.19	3 Sq.	1/2	21⁄4	71/16
3 ¼	1	DMN06130	11/8	1½	1⁄2	33⁄4	1/2	5/8	13⁄4	11/4	3/8	3⁄4-16	6¾	51⁄4	2.76	2¾ Dia.	1⁄4	23⁄8	81⁄2
374	13⁄8	DMN06131	15⁄8	2	5⁄8	394	72	72 78	194	174	78	1-14	074	J 74	2.70	3¾ Sq.	3⁄8	25⁄8	83⁄4
4 1	1	DMN06140	11/8	1½	1⁄2	41/2	1⁄2	5/8	13⁄4	11/4	3/8	³ ⁄4-16	63⁄4	3/4 51/4	3.32	2¾ Dia.	1⁄4	23⁄8	81⁄2
4	13⁄8	DMN06141	15⁄8	2	5⁄8	4 72		98	194	174	78	1-14	0%4	574	3.32	3½ Dia.	3⁄8	25⁄8	83⁄4
5	1	DMN06150	11/8	1½	1⁄2	5½	1/2	5/8	1¾	11/4	7/16	³ ⁄4-16	7	5½	4.10	2¾ Dia.	1⁄4	23⁄8	8 ¹³ ⁄16
5	13⁄8	DMN06151	15⁄8	2	5⁄8	572	72	98	194	174	/ 10	1-14	'	572	4.10	3½ Dia.	3⁄8	25⁄8	91/16
6	13⁄8	DMN06160	1%	2	5⁄8	6½	3⁄4	5/8	2	1½	7/16	1-14	8	6¼	4.88	3½ Dia.	3⁄8	23⁄4	101/16
0	13⁄4	DMN06161	2	23⁄8	3⁄4	072	94	98	2	1 72	/ 10	11⁄4-12	0	074	4.00	072 Dia.	1/2	3	105/16
8	13⁄8	DMN06180	1%	2	5⁄8	81/2	3/4	5/8	2	1½	9⁄16	1-14	81/8	63/8	6.44	3½ Dia.	3⁄8	23⁄4	105⁄16
0	13⁄4	DMN06181	2	23⁄8	3⁄4	072	94	98	2	1 72	/10	11⁄4-12	078	078	0.44	072 Dia.	1/2	3	10%16
10	13⁄4	DMN61100	2	23⁄8	3⁄4	1054	-	5⁄8	21⁄4	2	11/16	11⁄4-12	103/8	85/16	7.92	3½ Dia.	1/2	31/16	12 ¹⁵ /16
10	2	DMN61101	21⁄4	25⁄8	7⁄8	10 ⁵ / ₈ 1 2	∠ '/4	2	/16	1½-12	10% 0%16	0/16	1.92	5 Dia.	3⁄8	33⁄16	131/16		
10	2	DMN61200	21⁄4	25⁄8	7⁄8	123⁄4		3/	01/	/4 2	2 ¹¹ /16	1½-12	107/8 813/	Q 13/4c	9.40	0 5 Dia.	3⁄8	33⁄16	13%16
12	21/2	DMN61201	3	31⁄8	1	1294		3⁄4	21⁄4		. /16	17⁄8-12		9.4	9.40		1/2	37⁄16	10 ¹³ ⁄16

EXTRA LONG CUSHIONS

Custom length cushions can be designed for your application. Contact *Milwaukee Cylinder* for details!

Example: An OEM manufacturer of industrial equipment needed a cylinder to shuttle a 125 lb. rolling (and guided) fixture 36" of travel, at low airline pressure to avoid operator injury. A 3½" long head and cap cushion was designed to meet the operating specifications.

BSPT

BSPP

C=

EN

En Plated Parts:

stainless steel).

Other Components:

EN CYLINDER SPECIFICATIONS

Retainer, Mounts (excluding MT1/

MT2 which is hard chrome plated

303/304 Stainless Steel: Tie Rods

& Nuts, Retainer Screws, Piston Rod (hard chrome plated), Rod

Bushing with PTFE Wear Band

and Rod Wiper. (Optional: SAE 660 Bronze Rod Bushing)

EN PLATING SPECIFICATIONS:

13% Phosphorus

High Phosphorus (highest

Nickel plating available) Composition: 87-90% Nickel, 10-

Hardness: Rc 46-48

Thickness: .0005"-.0007"

Lubricity: Excellent (Similar to chrome)

Finish: Bright and very smooth

Other types of EN plating are available. Contact *Milwaukee*

–KK1 (STYLE 1)

for a prompt quote.

Cylinder with your specifications

MM ROD DIA.

С

Coefficent Of Friction: Low

corrosion resistant Electroless

Tube, Head, Cap, Bushing

Series H

BRITISH STANDARD PIPE TAPER

British Standard Pipe Taper (**BSPT**) threads have the same taper as American NPT tapered threads, but use a 55° Whitworth thread form and different diameters. *(Not interchangeable with NPT)*

BRITISH STANDARD PIPE PARALLEL

British Standard Pipe Parallel (**BSPP**) also refered to as BSP "Straight" Thread. (*Not interchangeable with NPT*)

EXTENDED PISTON ROD

"**C**=" is commonly referred to as Piston Rod Extension. Piston rods can be extended to any length up to 120" total piston rod length, including stroke portion. Cylinders with long "C" lengths can be mounted away from obstacles or outside hazardous environments.

ELECTROLESS NICKEL

"**EN**" or Electroless Nickel plating was invented in 1946, and has gained worldwide commercial usage since 1964. Common usages include aircraft landing gear, automotive brake cylinder and components, fuel injector parts, gas turbine parts, spray nozzles for chemical applications and many electronic devises including hard drives.

The properties of Electroless Nickel contribute to the multitude of uses. The coating provides an attractive finish, while exhibiting high abrasion and corrosion resistance. Its ability to uniformly coat blind holes, threads, internal surfaces and sharp edges contributes to its effectiveness. It has a very high bonding strength to the base metal (100,000-200,000 psi), so much so that gas turbines use electroless nickel plating as a base to braze broken blades to.

COMMON USAGES:

- <u>FOOD PROCESSING</u> EN plating has been used to handle such diverse products as sodium hydroxide, food grade acids and fish oils. Excellent resistance to mild sanitizing caustics, chlorine, and chlorides in general. The natural smooth finish ensures cleanliness in food processing equipment.
- <u>PETROLEUM AND CHEMICAL</u> The petroleum and chemical industry are large users of electroless nickel plating for corrosion protection. Design tip: Submit the list of chemicals and concentration levels to *Milwaukee Cylinder* for evaluation and recommendations. In some instances, Stainless Steel cylinders provide the best value and long cylinder life.
- <u>MEDICAL AND PHARMACEUTICAL</u> The medical industry uses EN plated cylinders in cleanrooms, on equipment used to make plasma or IV bags, since it is critical that cylinder components need to be sterilized and particle "flake free". The pharmaceutical industry typically can be harsh on equipment, even abusive – but the equipment must remain completely reliable. EN cylinders provide the most reliable and cost effective choice.

KK3S option combines the KK3 female threaded rod end design and a stud, with permanent Loctite. When assembled, the KK3S has the same dimensions as a KK1 rod end.

This option is useful in applications that typically break standard KK1 rod ends due to high load impacting.

LF

KK3S

LOW FRICTION

Material: Carboxilated Nitrile nitril Operating Temp.: -20°F to 200°F Operating Pressure: 250 psi Air

"LF" Low Friction option incorporates the use of round-lip, extremely low friction carboxilated nitrile seals. Round-lip seals "hydroplane" on opposed sealing surfaces, and have a lower running and break-away friction. • *Material: Carboxilated Nitrile* • *Operating Temperature:* -20°F to 200°F (-25°C to 90°C) • *Operating Pressure:* 250 psi air (17 bar)

Dimensional Data MN Basic Options: MA, MAB

Design Guide

MAB

MICRO-ADJUST WITH URETHANE BUMPER

A noise dampening urethane bumper is added between the metal contact points, minimizing noise. See Sketch 2 above.

MN Basic Options: MPR/MPH, MS, NR

milwaukee Ylinder

Series MH Series H

MPR/MPH

MS

NR

MAGNETIC PISTON

MPR Magnetic Pistons are used in conjunction with *Milwaukee Cylinder's* R10, R10P, RAC Reed and MSS Solid State Switches. (See pages 127-133 for switches)

MPH Magnetic Pistons are used with *Milwaukee Cylinder's* "Old Style" HE011, HE03SK and HE04SC Hall Effect Switches.

MAGNETIC PISTON

METALLIC ROD SCRAPER

Aggressively scrapes the piston rod, removing foreign material such as spatter, sprays and powders. (*Brass contruction*)

NON-ROTATING (NFPA) CYLINDERS

2" through 12" bore 200 psi air, 400 psi hydraulic (non-shock)

Benefits:

- Two internal guide rods throughout stroke
- High repeatability at each end of stroke (+/- 1 degree)
- All external dimensions are the same as standard cylinder (no additional length or width required)
- Standard Diameter Guide Rod Seals & Bronze Bearings for long life and reliable operation
- Available in Double Rod End Models

Advantages

- Eliminates the need for external guide shafts in many positioning applications
- Guide rods are internal, self-cleaning, not subjected to harsh cleaners
- Compact design saves space, no larger than standard NFPA cylinders!
- Durable, self-contained construction

Note: "NR" option not available in combination with "BP" bumper piston seal option.

APPLICATION POSSIBILITIES:

"N	NR' GUIE	DE ROD SIZES	AND MAX.	STROKE
Bore Ø	Rod MM	Cushions	Guide Rod Ø	Max. Stroke (inches)
2	5⁄8	Cap only	0.250	10
2 ¹ / ₂	5⁄8	Cap only	0.312	12
272	1	N/A	0.312	12
31⁄4	1	Available	0.375	18
574	13⁄8	Cap only	0.375	18
4	1	Available	0.625	30
4	13⁄8	Available	0.625	30
5	1	Available	0.625	30
5	13⁄8	/ Wallabic	0.625	30
6	13⁄8	Available	0.625	30
0	13⁄4	Available	0.625	30
8	13⁄8	Available	1.000	40
0	13⁄4	Available	1.000	40
10	13⁄4		1.000	40
10	2	Available	1.000	40
10	2	Available	1.000	40
12	21/2	Available	1.000	40

OS

OVERSIZE ROD

Applications requiring long strokes may require oversize piston rod diameters to prevent sagging or buckling. To determine the recommended rod diameter, refer to Chart 3 on page 122.

SAE "O"-RING BOSS PORTS (SAE J514) SAE ports can be ordered in place of NPT ports. Order by SAE number. (Example SAE#10)

Recom	Recommended SAE Port Size by Cylinder Bore												
Bore Ø													
1 ½	#4 (7⁄16-20)	5	#6 (%16-18)										
2	#4 (7/16-20)	6	#8 (¾-16)										
21/2	#4 (7/16-20)	8	#8 (¾-16)										
31⁄4	#6 (%16-18)	10	#10 (1/8-14)										
4	#6 (%16-18)	12	#10 (1/8-14)										

www.milwaukeecylinder.com

milwaukee

121

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Power Units/Valves

Design Guide

STAINLESS STEEL

Stainless Steel, when used in conjunction with Anodized Aluminum Heads, Caps and Tube, provide corrosion resistance in outdoor applications and wet environments. Customize your cylinder by choosing from Stainless Steel Fasteners, Piston Rod, or Tie Rods and Nuts.

Screws)

SSA

STAINLESS STEEL "ALL"

Stainless Steel Piston Rod (Hard-Chrome Plated), Stainless Steel Fasteners, Stainless Steel Tie Rods and Nuts

SSR

ST

STAINLESS STEEL PISTON ROD

Stainless Steel Piston Rod (Hard-Chrome Plated)

SSF

STAINLESS STEEL TIE RODS & NUTS

Stainless Steel Fasteners (Bushing Retainer

Stainless Steel Tie Rods and Nuts

STAINLESS STEEL FASTENERS

STOP TUBE

Stop Tubes are designed to reduce the piston rod bushing stress to within the designed range of the bearing material. This will insure proper cylinder performance, in any given application. Stop Tubes lower the cylinder bearing stress by adding length to the piston, which increases the overall length of the cylinder. (Note: *Milwaukee Cylinder* uses a double piston design for 2-inch and longer stop tubes.)

Stop Tube Selection

To determine the proper amount of stop tube for your application, you must first find the value of "D", which represents the "*stroke, adjusted for mounting condition*". Each mounting condition creates different levels of bushing stress, which have direct impact on the amount of stop tube required. (See Chart 1)

Once the value of "D" is known, refer to Chart 2 for the recommended amount of stop tube.

To order a Stop Tube, add the stop tube prefix "ST=" and the length, to the end of your cylinder model number.

As noted, the <u>working stroke</u> must be included when ordering.

<u>Chart 1</u>

Find the value of "D" for your application

Series MH

Series A

MN Basic Options: TH, VS, WB

Design Guide

▼ ACCESSORIES CROSS REFERENCE CHART

	CYL	INDER MODEL					ACCESSOR	IES		
Bore	Rod	Rod Style (KK)		Rod Thread	Rod Clevis Rod E		Clevis Pin Clevis Bracket Eye Bra			
Ø	MM					-t+	- ## -			
	5/8	(Standard)	KK1	7⁄16-20	RC437	RE437	CP500			
41/ 0 01/	98		KK2	1⁄2-20	RC500	RE500	CP500	CB500	EB500	
1 ½, 2 , 2 ½	-	(Standard-Oversized)	KK1	3⁄4-16	RC750	RE750	CP750	0000	EB300	
	I		KK4	1-14	RC1000	RE1000	CP1000			
	1	(Standard)	KK1	3⁄4-16	RC750	RE750	CP750			
			KK4	1-14	RC1000	RE1000	CP1000	CB750	EB750	
3¼, 4, 5	12/	(Standard-Oversized)	KK1	1-14	RC1000	RE1000	CP1000	CB750	EB750	
	13⁄8		KK2	11⁄4-12	RC1250	N/A	CP1375			
	12/	(Standard)	KK1	1-14	RC1000	RE1000	CP1000			
	13⁄8		KK2	11⁄4-12	RC1250	N/A	CP1375	CB1000	EB1000	
6 and 8	42/	(Standard-Oversized)	KK1	11⁄4-12	RC1250	N/A	CP1375	CB1000	EBIUUU	
	1¾		KK2	11⁄2-12	RC1500	N/A	CP1750			
	12/	(Standard)	KK1	11⁄4-12	RC1250	RE1250	CP1375	CB1375	EB1375	
10	1¾		KK2	1½-12	RC1500	RE1500	CP1750	CB1750	EB1750	
	2	(Standard)	KK1	1½-12	RC1500	RE1500	CP1750	CB1750	EB1750	
12	2	(Standard)	KK1	1½-12	RC1500	RE1500	CP1750	CB1750	EB1750	

	CLEVI	S PIN (with Br	idge Pin - Sta	ndard)		MATERIAL: 1018 CRS
Part No.	CD	н	HP	LH	LP	FINISH: BLACK OXIDE
CP500	1⁄2	5⁄8	5⁄32	21⁄4	2 ³ / ₃₂	
CP750	3⁄4	¹⁵ ⁄16	5/32	3	227/32	
CP1000	1	1¾16	13/64	31⁄2	35⁄16	
CP1375	13⁄8	1¾	1⁄4	5	41⁄2	
CP1750	1¾	2%4	1⁄4	6	5½	LH

	CLEVIS PIN (w	vith Cotter Pin)	MATERIAL: 1045 CRS
Part No.	CD	LH	LP	FINISH: CHROME PLATED O.D.
CP500C	1⁄2	21⁄4	1 ¹⁵ ⁄16	CLEVIS PIN (INCLUDES COTTER PINS)
CP750C	3⁄4	3	2 ²³ ⁄32	HARD CHROME O.D.
CP1000C	1	31⁄2	37⁄32	
CP1375C	1¾	5	4¼	
CP1750C	1¾	6	51⁄2	
CP2000C	2	6	5½	← CD + .000/001

CLEVIS PIN (with E-Ring) LP Part No. CD LH **CP500E** 1⁄2 21⁄8 11⁄8 **CP750E** 3⁄4 215/16 25⁄8 **CP1000E** 1 37/16 31/8

SMALL CLEV	S PIN	l (with	Bridg	e Pin)	MATERIAL: 1018 CRS
Part No.	CD	HP	LH	LP	FINISH: BLACK OXIDE
CP500CCS	1⁄2	5⁄32	1¾	1¼	
CP750CCS	3⁄4	5⁄32	2	11⁄8	

	SM/	ALL F	ROD	CLE	VIS			MATERIAL: 1018 CRS	
Part No.	СВ	CD	CE	СН	CW	KK1	KK2	L	FINISH: BLACK OXIDE
RC437CCS	1⁄2	1⁄2	1¾	1	1⁄4	7⁄16-20	-	3⁄4	SMALL ROD CLEVIS
RC500CCS	1⁄2	1⁄2	1¾	1	1⁄4	_	1⁄2-20	3⁄4	
RC750CCS	3⁄4	3⁄4	1¾	1½	3⁄8	3⁄4-16	_	1	

MN Accessories: Clevis, Pins & Mounts

			F		S				MATERIAL: CAST STEEL
Part No.	СВ	CD	CE	СН	CW	ER	KK	L	FINISH: BLACK OXIDE
RC437	3⁄4	1⁄2	1½	1	1⁄2	1⁄2	7⁄16-20	3⁄4	
RC500	3⁄4	1/2	1½	1	1/2	1⁄2	1⁄2-20	3⁄4	
RC750	11⁄4	3⁄4	23⁄8	11⁄4	5⁄8	3⁄4	3⁄4-16	11⁄4	
RC1000	1½	1	31⁄8	1½	3⁄4	1	1-14	1½	
RC1250	2	1¾	41⁄8	2	1	1¾	11⁄4-12	21⁄8	
RC1375	2	1%	41⁄8	2	1	1¾	1¾-12	21⁄8	(Clevis Pins sold separately from Rod Clevises)
RC1500	21⁄2	1¾	41⁄2	23⁄8	11⁄4	1¾	1½-12	21⁄4	
RC1750	21⁄2	1¾	41⁄2	23⁄8	11⁄4	1¾	1¾-12	21⁄4	
RC1875	21⁄2	2	51⁄2	3	11⁄4	2	17⁄8-12	21⁄2	

			ROD EYE				MATERIAL: 1018 CRS
Part No.	А	CA	СВ	CD	ER	КК	FINISH: BLACK OXID
RE437	3⁄4	1½	3⁄4	1⁄2	5⁄8	7⁄16-20	ROD EYE
RE500	3⁄4	1½	3⁄4	1/2	5⁄8	1⁄2-20	
RE750	11⁄8	21/16	11⁄4	3/4	7/8	3⁄4-16	
RE1000	15⁄8	2 ¹³ ⁄16	1½	1	13⁄16	1-14	
RE1250	2	37⁄16	2	13⁄8	1%16	11⁄4-12	
RE1500	21⁄4	4	21⁄2	1¾	2	1½-12	(Clevis Pins sold separately from Rod Eyes)

				CLEV	IS BRACI	KET					
Part No.	BA	СВ	CD	CW	DD	E	F	FL	L	М	
CB500	15⁄8	3⁄4	1⁄2	1⁄2	3⁄8-24	21⁄2	3⁄8	11/8	3⁄4	5⁄8	CLE
CB750	2%16	11⁄4	3⁄4	5⁄8	1⁄2-20	31⁄2	5⁄8	17⁄8	11⁄4	3⁄4	
CB1000	3¼	1½	1	3⁄4	5⁄8-18	41⁄2	3⁄4	21⁄4	1½	1	
CB1375	3 ¹³ ⁄16	2	1¾	1	5⁄8-18	5	7⁄8	3	21⁄8	1¾] _
CB1750	4 ¹⁵ ⁄16	21⁄2	1¾	11⁄4	7⁄8-14	6½	7⁄8	31⁄8	21⁄4	1¾	(Cle

				EYE BR	ACKET					
Part No.	BA	СВ	CD	DD	E	F	FL	L	м	
EB500	1%	3⁄4	1⁄2	¹³ ⁄32	21⁄2	3⁄8	11⁄8	3⁄4	1⁄2	
EB750	21/16	1¼	3⁄4	17/32	3½	5⁄8	17⁄8	11⁄4	3⁄4	
EB1000	31⁄4	1½	1	²¹ / ₃₂	41⁄2	3⁄4	21⁄4	1½	1]
EB1375	3 ¹³ ⁄16	2	13⁄8	²¹ / ₃₂	5	7⁄8	3	21⁄8	13⁄8	
EB1750	4.95	21⁄2	1¾	²⁹ / ₃₂	6½	7⁄8	31⁄8	21⁄4	1¾	

vis Pins sold separately from Clevis Brackets)

(Clevis Pins sold separately from Eye Brackets)

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators Power Units/Valves

Design Guide

www.milwaukeecylinder.com

STAINLESS STEEL ACCESSORIES CROSS REFERENCE CHART

CYLINDER MODEL					ACCESSORIES				
Bore Rod		Rod Style (KK) Roc		Rod Thread	Rod Clevis	Rod Eye	Clevis Pin	Clevis Bracket	Eye Bracket
Ø	ММ							- ;;; ; ;; -	
	5/8	(Standard)	KK1	7⁄16-20	SS-RC437	SS-RE437	SS-CP500		
41/ 0.01/	98		KK2	1⁄2-20	SS-RC500	SS-RE500	SS-CP500	00 00500	SS-EB500
1½, 2, 2½	1	(Standard-Oversized)	KK1	3⁄4-16	SS-RC750	SS-RE750	SS-CP750	SS-CB500	
			KK4	1-14	SS-RC1000	SS-RE1000	SS-CP1000		
	1	(Standard)	KK1	³ ⁄4-16	SS-RC750	SS-RE750	SS-CP750	SS-CB750	SS-EB750
01/ 4 5			KK4	1-14	SS-RC1000	SS-RE1000	SS-CP1000		
3¼, 4, 5	1%	(Standard-Oversized)	KK1	1-14	SS-RC1000	SS-RE1000	SS-CP1000		
			KK2	11⁄4-12	SS-RC1250	N/A	SS-CP1375		
	1%	(Standard)	KK1	1-14	SS-RC1000	SS-RE1000	SS-CP1000		
0	1%8		KK2	11⁄4-12	SS-RC1250	N/A	SS-CP1375	00 004000	00 504000
6 and 8	13⁄4	(Standard-Oversized)	KK1	11⁄4-12	SS-RC1250	N/A	SS-CP1375	SS-CB1000	SS-EB1000
	174		KK2	1½-12	SS-RC1500	N/A	SS-CP1750		

	CLEVIS P	IN (with Cotter Pins)		CLEVIS PIN (INCLUDES COTTER PINS)
Part No.	CD	LH	LP	
SS-CP500	1⁄2	21⁄4	1 ¹⁵ ⁄16	
SS-CP750	3⁄4	3	2 ²³ / ₃₂	
SS-CP1000	1	31⁄2	37/32	
SS-CP1375	13⁄8	5	41⁄4	
SS-CP1750	1¾	6	51⁄2	(Clevis Pins sold with (2) S.S. Cotter Pins)

			ROD CL	EVIS			
Part No.	СВ	CD	CE	CW	ER	КК	L
SS-RC437	3⁄4	1⁄2	1½	1⁄2	1⁄2	1⁄16-20	3⁄4
SS-RC500	3⁄4	1⁄2	1½	1/2	1⁄2	1⁄2-20	3⁄4
SS-RC750	11⁄4	3⁄4	23⁄8	5⁄8	3⁄4	³ ⁄4-16	1¼
SS-RC1000	1½	1	31⁄8	1⁄4	1	1-14	1½
SS-RC1250	2	13⁄8	41⁄8	1	13⁄8	11⁄4-12	21⁄8
SS-RC1500	21⁄2	13⁄4	41⁄2	1¼	13⁄4	1½-12	21⁄4

HARD CHROME O.D.

CD +.000/-.001

ACCESSORIES (303 Stainless Steel)

			ROD EYE			
Part No.	Α	CA	CB	CD	ER	KK
SS-RE437	3⁄4	11⁄2	3⁄4	1⁄2	5⁄8	7⁄16-20
SS-RE500	3⁄4	1½	3⁄4	1/2	5⁄8	1⁄2-20
SS-RE750	11⁄/8	21/16	11⁄4	3⁄4	7⁄8	³ ⁄4-16
SS-RE1000	15⁄8	2 ¹³ ⁄16	1½	1	1 ³ ⁄16	1-14
SS-RE1250	2	37⁄16	2	1¾	1 %16	11⁄4-12
SS-RE1500	21⁄4	4	21/2	1¾	2	1½-12

CLEVIS BRACKETS AND EYE BRACKETS

DD

3⁄8-24

1/2-20

5%-18

13/32

17/32

²¹/₃₂

Е

21/2

31⁄2

41⁄2

21/2

31/2

41⁄2

F

3⁄8

5⁄8

3⁄4

3⁄8

5⁄8

3⁄4

FL

11/8

11⁄/8

21/4

11⁄8

11/8

21⁄4

L

3⁄4

11⁄4

11/2

3⁄4

11/4

11/2

CW

1⁄2

5⁄8

3⁄4

N/A

(Clevis Pins sold separatel	y from Rod Eyes)

	-		
		CLEVIS BRACKET	EYE BRACKET
Μ	CD	C DD TAP	C DD DIAMETER
5⁄8			+ + + - + +
3⁄4		ВА	ВА
1			
1⁄2			
3⁄4	→ F ← L → ← M → ← FL →	->lcwl≪-cb->lcwl≪- ≪ E>	I ← CB→I ← E → →
1	(Clevis Pin	s sold separately from Clevi	s & Eye Brackets)

Series LH Series A

Series H

Series MH

>

Series MN

CLEVIS BRACKETS

EYE BRACKETS

Part No.

SS-CB500

SS-CB750

SS-CB1000

SS-EB500

SS-EB750

SS-EB1000

BA

1 %

2%16

3¼

1 %

2%16

3¼

СВ

3⁄4

11⁄4

11/2

3⁄4

11/4

11/2

CD

1⁄2

3⁄4

1

1⁄2

3⁄4

Milwaukee Cylinder offers Reed, High Power AC Reed, DC Solid State and Reed Switches with built-in circuit protection to meet a wide variety of customer needs.

Advantages:

- Compact low profile switch/bracket assembly
- · Switches and brackets are nylon and stainless steel hardware construction - suitable for wash down or corrosive environments (IP67)
- Quick, simple set-up: Requires standard (slotted) screw driver only
- High visibility LED can be seen up to 20 feet
- Optional quick connect threaded coupling on low current model
- Magnetically operated, can be located anywhere in the actuator stroke range
- Can be used with the MN Series Milwaukee Cylinder aluminum actuators, electroless nickel plated series, and stainless steel

SWITCHES

- Miniature AC/DC Reed
- High Power AC Reed
- CE RoHS
- Miniature AC/DC Reed with built-in Circuit Protection
- Extended Temperature Range Reed
- Miniature DC Solid State

(Note: Specify "MPR" option when ordering actuator)

- Suitable for all bore sizes (1¹/₂" to 12")
- One magnet (MPR) for all switch models

Benefits of **REED** Switch:

- Internal circuit protection
- Lower cost
- Low or high current models available, AC or DC, and TRIAC type switch for inductive loads
- · High visibility red LED (on low current models)
- · Choice of lead lengths available on all models
- Optional quick connect threaded coupling on low current model

Benefits of SOLID STATE Switch:

- Faster signal speeds
- Solid State Reliability No moving parts means long life, no contact bounce or wear
- Reverse Polarity and Over Voltage Protection
- High Visibility Red LED (all models)
- Choice of lead lengths available or Quick Connect Threaded Coupling

R10

RAC

• 5-120 Volts AC, 5-110 Volts DC,

Minature REED Switch

- 400 mA current rating (max.)
- Cable options include 24" or 120" plain cable leads, and 8mm threaded quick connect
- High visibility LED

High Power AC REED Switch

 12-240 Volts AC, 800 mA current rating, TRIAC output

 Cable options include 24" or 120" plain cable leads

R10P

Miniature AC/DC REED Switch with built-in Circuit Protection

- 5-120 Volts AC, 5-110 Volts DC, 150 mA current rating (max.)
- Cable options include 24" or 120" plain cable leads • High visibility LED
- · Circuit protection consisting of varistor/choke arrangement that will protect switch from transients, voltage spikes and inrush currents usually associated with long cable runs (particularly at higher voltages) and unprotected inductive loads such as relays, solenoids, motors, and motor starters and some PLC's

WITCH APPLICATION SELECTION GUIDE For selecting the right switch for your application

Switch Model	Programmable	Relays	Solenoids	Indicat	or Lights	Motors	Time
	Controllers			Bulbs	Solid State		Counters
R10 Reed	Yes	<10VA*	<10VA*	<10VA*	Yes	<10VA*	<10VA*
RAC High Powered Reed**	No	Yes	Yes	Yes	No	Yes	Yes
R10P Reed	Yes	<10VA	<10VA	<10VA	No	<10VA	<10VA
MSS Solid State	Yes	<300mA	No	<300mA	Yes	No	<300mA

*Use resistor-capacitor protection

**Minimum current = 80mA

Minature SOLID MSS **STATE Switch**

- 10-30 Volts DC, 4-300 mA current rating
- Can be wired current sinking (NPN) or current sourcing (PNP)
- Cable options include 24" or 120" plain cable leads, and 8mm threaded guick connect
- High visibility LED

milwaukée

127

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

MN Accessories: Switches – REED

Contacts: Contact Rating: Input Voltage: Minimum Load Current: Maximum Load Current: Actuating Time Average: LED Indicator: Not Available Temperature Range: Protection Rating:

High Power AC Reed Switch, 120" Plain Cable Lead, (2 wire Switch) TRIAC Output SWITCH 200 Watts Max. 12 to 240 Volts (AC only) 80 mA 800 mA 2.0 milliseconds

-20° C to 70° C (-4° F to 158° F) IP67

Minimum Load Current 80 mA Maximum Load Current 800 mA

ülinder

128

Series H

MN

Series

MN Accessories: Switches – SOLID STATE/HALL EFFECT

	(2 wire Switch)	
*Output Type:	Current Sinking or Current Sourcing	BLUE BLUE - LOAD OR -
Input Voltage:	10 to 30 Volts DC	
Current Consumption (not sensing):	1mA	Typical Current Sourcing (PNP) Configuration
Minimum Load Current:	4 mA	
Maximum Load Current:	300 mA	
"ON" Voltage Drop:	3 Volts @ 4 mA	
	4 Volts @ 300 mA	
LED Indicator:	High Luminescence Housing	
Temperature Range:	-20° C to 70° C	
	(-4° F to 158° F)	SWICH BROWN LOADOR +
Actuating Time Average:	2.0 Microseconds	BLUE
Protection Rating:	IP67	
Reverse Polarity Protected:	Yes	Typical Current Sinking (NPN) Configuration
Transient (over voltage) Protected:	Yes	

*NOTE: This is a (2) wire switch used in series with the load. Therefore, this switch can be used with devices requiring either a current sinking (NPN) output or a current sourcing (PNP) output from the solid state switch.

MN Accessories: Switches and Brackets

milwaukée

SWITCHES R10 / R10X MSS / MSSX PLAIN CABLE LEADS 1.0 R10 / MSS = 24" (0.6m) JACKETED LEADS (25.4) R10X / MSSX = 120" (3.0m) .39 (JACKET CUT BACK 1" ON END) (25.4) (9.9)**R10Q** 8 mm UNIVERSAL (3) PIN MALE CONNECTOR (Q-OPTION) MSSQ M8 x 1 THD. m RUGGED THREADED 6.0 (152.4) 1.0 (25.4) CONNECTION FOR POSITIVE LOCK .39 (9.9) RAC / RACX **R10P / R10PX** PLAIN CABLE LEADS R10P / RAC = 24" (0.6m) JACKETED LEADS R10PX / RACX = 120" (3.0m).39 (9.9) 1.38 (35.0) (JACKET CUT BACK 1" ON END) (25.4) SWITCH BRACKETS SB15 (For 11/2 " Through 21/2" Bore Cylinders) CLAMP TIGHTENING SCREW Ø **Bracket Construction:** Molded Nylon 6 (Black) and Stainless Steel Hardware TIE BOD MTG HOLE SWITCH MTG. HOLE -.62 (15.7) SB32 (For 3¹/₄ " Through 12" Bore Cylinders) TIE ROD MTG. GAP CLAMP TIGHTENING SCREW Bracket Construction: Molded Nylon 6 (Black) and À Stainless Steel Hardware SWITCH MTG. HOLE - .5 (12.7) QUICK CONNECT CORD SET JACKETED CABLE-ENDS STRIPPED & TINNED (Used with "Q" Type Switch Leads) 8M X 1 THD (FEMALE) FOR CABLES: .26 C4-T (2 METER CABLE LENGTH) CONDUCTOR COLORS: 1. BROWN C4-T = 78.74(2 METERS) C4X-T (5 METER CABLE LENGTH)

3. BLUE

4. BLACK

COUPLING NUT -

C4X-T = 196.85 (5 METERS)

Series A

MN Accessories: Switch Mounting

SWITCH BORE DIMENSIONAL TABLE

Part #	Bore Ø	Α	В	С	D	E	G
2	1 ½	13⁄8	1 ¹³ ⁄32	2	1⁄4	5⁄8	1/2
	2	1%	1 ²¹ /32	21/2	5⁄16	5⁄8	1/2
SB	2 ½	17⁄8	11 1/8	3	5⁄16	5⁄8	1/2
	31⁄4	21/8	21⁄8	3¾	3⁄8	1/2	9⁄16
	4	27/16	23⁄8	41⁄2	3⁄8	1/2	9⁄16
N	5	27/8	23⁄4*	51/2	1/2	1/2	9⁄16
SB32	6	31⁄4*	31⁄4*	61⁄2	1/2	1/2	9⁄16
S	8	41⁄4*	41⁄4*	81⁄2	5⁄8	1/2	9⁄16
	10	55⁄16*	55⁄16*	10%	3⁄4	1/2	9⁄16
	12	63⁄8*	63⁄8*	12¾	3⁄4	1/2	9⁄16

* These dimensions are 1/2 of the 'C' dimension. The switch barcket does not protrude beyond standard head/cap.

V HOW TO ASSEMBLE SWITCH AND BRACKETS

Design Guide

131

Manipulators

HYSTERESIS:

The distance between the switch break point moving in one direction, and the switch make point moving in the opposite direction.

BAND WIDTH:

Distance the piston moves while the switch is made (in either direction), less the hysteresis.

NOTE: Dimensions are in inches, (metric in parentheses). Results are based upon Milwaukee Cylinder's piston and magnet assemblies. Results may vary if used with other manufacturers cylinder products.

Series A

Series H

Series MH

Series LH

V SWITCH ACCESSORIES

Quick Connect Cord Sets				
Model	Description			
C4-T	8mm Straight Quick Connect Cord X 2 Meter (78")			
C4X-T	8mm Straight Quick Connect Cord X 5 Meter (196")			

ABOUT OUR SWITCHES

Our switches are different! The most common complaint in the market is the unreliability of magnetically operated switches. Most cylinder piston magnets have about 10-30% more power than required to operate the switch. This results in erractic operation, a nuisance for maintenance and lowering overall plant productivity.

Milwaukee Cylinder's magnets have 50-100% more power than required to operate our switch! The combination of *Milwaukee Cylinder's* R10, R10P, RAC and MSS Switches and our Cylinders, raises the reliability of switch operation comparable to that of many mechanically operated limit switches.

APPLICATION RECOMMENDATIONS AND PRECAUTIONS

- Noise suppression Motors and valve solenoids will produce high pulses throughout an
 electrical system. Therefore, primary and control circuit wiring should not be mixed in the same
 conduit. Separate power supplies for both logic level signals (Microprocessor, P.C., CPU, Input
 Devices) and Output Field Devices (Motors, Valve Solenoids) is recommended.
- <u>Never</u> connect R10, R10P or MSS type switches without a load present. The switch will be destroyed.
- Some electrical loads may be capacitive. Capacitive loading may occur due to distributed capacity in cable runs over 25 feet. Use switch model RAC whenever capacitive loading may occur.
- To obtain optimum performace and long life, switches should not be subjected to strong magnetic fields, extreme temperatures (outside of specifications), or excessive ferrous filings or chip buildup.
- Improper wiring may damage or destroy the switch. Therefore, the wiring diagrams along with the listed power ratings, should be carefully observed before connecting power to the switch.

Following these tips can save time and provide trouble free installations!

Hyd-Pneu Devices

Cyl Accessories

Other switches available:

- 12mm Quick Connect
- Pulse Extension Switch
- Special Length Cable
- Change Over Switch (SPDT)
- Weld Immune Switch
- High Temp. Switch

(Consult factory for details.)

Design Guide

133

Manipulators

MN06130

2 Cylinder Code

CONFIGURE YOUR CYLINDER (Series MN cylinder)

CYLINDER CODE

Rod Ø

5⁄8

1

5⁄8

1

5⁄8

1 1

13/8

1

13⁄8

1

13⁄8

13/8

1¾

13⁄8

13/4

KK2

6 Seals

5 Options

3 NFPA Mounts **4** Cushions

Cylinder Code MN00611

MN00612

MN06110

MN06111

MN06120

MN06121

MN06130

MN06131

MN06140

MN06141 MN06150

MN06151

MN06160

MN06161

MN06180

MN06181

MN61100

MN61101

MN61200

MN61201

Double Rod End

add "D"

NFPA	A MO	DUN.	TS	
Description				

	Description
MF1	Front Flange (11/2"-6" Bore)
MF2	Rear Flange (1½"-6" Bore)
ME3	Front Mounting Holes (8"-12" Bore)
ME4	Rear Mounting Holes (8"-12" Bore)
MP1	Rear Pivot Clevis (11/2"-12" Bore)
MP2	Rear Pivot Clevis, Removable (11/2"-6" Bore)
MP4	Rear Fixed Eye Mount, Removable (11/2"-6" Bore)
MS1	Front & Rear End Angle (11/2"-8" Bore)
MS2	Side Lug (1½"-8" Bore)
MS4	Bottom Tapped Holes (1½ -12" Bore)
MT1	Front Trunnion (11/2"-8" Bore)
MT2	Rear Trunnion (1½"-8" Bore)
MT4	Intermediate Trunnion (11/2"-8" Bore)
MX0	No Mount (1½"-12" Bore)
MX1	Extended Tie Rods - Head & Cap (11/2"-12" Bore)
MX2	Extended Tie Rods (Cap) (1 ¹ / ₂ "-12" Bore)
МХЗ	Extended Tie Rods (Head) (11/2"-12" Bore)
	MF2 ME3 ME4 MP1 MP2 MP4 MS1 MS2 MS4 MT1 MT2 MT4 MX0 MX1 MX2

4	CUSHIONS	6 SEALS
	Description	7 BUNA (-30° to 250° F) 8 VITON (-15° to 350° F)
н	Head Cushion Position 2 is Standard	S SPECIAL
	Specify for Positions: 1, 3 & 4	7 STROKE
LH	Long Head Cushion Position 2 is Standard Specify For Positions: 1, 3 & 4	0" to 120" / Made to order.
eĽH	Extra Long Head Cushion Position 2 is Standard Specify for Positions: 1, 3 & 4	
с	Cap Cushion Position 2 is Standard Specify for Positions: 1, 3 & 4	1 2
LC	Long Cap Cushion Position 2 is Standard Specify for Positions: 1, 3 & 4	BLIND
*	Extra Long Cap Cushion	

ELC Position 2 is Standard Specify for Positions: 1, 3 & 4

NC No Cushion

5	OPTIONS				
Add le	ength to cylinder - See "Option Length Adder" Chart Below				
	Standard				
	Extended piston rod thread (Example: $A = 2^{"}$)				
	Adjustable stroke - retract (specify length, example: $AS = 4$ ")				
	Air / oil piston				
*B	1/4" Urethane bumper both ends				
*BC	1/4" Urethane bumper cap only				
*BH	1/4" Urethane bumper head only				
BP	Bumper piston seals (11/2" - 8" bore)				
BSPP	BSPP ports (specify size, example: BSPP = 1/4")				
BSPT	BSPT ports (specify size, example: BSPT = 1/4")				
C =	Extended piston rod (example: C = 3")				
EN	Electroless nickel plated (see page 118 for specifications)				
KK2	Large male rod thread				
ККЗ	Female rod thread				
KK3S	Studded piston rod (KK3 with stud, loctite in place)				
KK4	Full diameter male rod thread				
KK5	Blank rod end (no threads, "A" = 0")				
LF					
MA	Micro-adjust (6" max. stroke) available on double rod end models				
MAB	Micro-adjust with sound dampening bumper (6" max. stroke)				
MPR	Magnetic piston for Reed or Solid State switches R10, RAC, and MSS (see pages 127-133 for selection)				
MPH	Magnetic piston for hall switches				
MS	Metallic rod scraper (brass construction)				
NR	Non-rotating (see page120 for specifications)				
OP	Optional port location (example: ports at 2 and 3)				
os	Oversize rod diameter (specify size, example: OS = 1%")				
SAE	Sae ports (specify size, example: SAE #10)				
SE	Spring extend (1½, 2, 2½ inch bore)				
SR	Spring return (1½, 2, 2½ inch bore)				
SSA					
SSF					
	Stainless steel piston rod				
SST					
*ST	Stop tube (specify stop tube length and effective stroke) (example: MN MS4 2 x 24" effective stroke-ST=3)				
teel tube	Steel cylinder tube, black epoxy paint finish				

7 Stroke

- Steel tube Steel cylinder tube, black epoxy paint finish TH 400 psi hydraulic non-shock (see page 123 for specifications)
- **XX** Special variation (specify) * Add length to cylinder - See "Options Length Adder" chart below

OPTIONS LENGTH ADDER (add to catalog basic overall length dimensions.											
Bore Ø		c	PTION	1		ST* (Stop Tube)					
	B BC BH ELC		ELH								
1 ½	1/2	1⁄4	1⁄4	1	1	2					
2	1/2	1⁄4	1⁄4	1	1	2					
2 ½	1/2	1⁄4	1⁄4	1	1	2					
3 ½	1/2	1⁄4	1⁄4	11/4	11/4	2					
4	1/2	1⁄4	1⁄4	11⁄4	11⁄4	2					
5	1⁄2	1⁄4	1⁄4	1 1⁄4	11⁄4	2					
6	1/2	1⁄4	1⁄4	11/2	11/2	2					
8	1/2	1⁄4	1⁄4	11/2	11/2	2					
10	1/2	1⁄4	1⁄4	2	2	2					
12	1⁄2	1⁄4	1⁄4	2	2	2					

Standard Port and Cushion Adjustment Positions

- Ports Position 1
- Cushion adjustment Position 2
- Specify non-standard positions when ordering

Part Number System

milwauké

Example: A 31/4" Bore, 1" rod, MF1 mount, cushion both ends, Style KK2 rod end, standard seals with a 143/4" stroke. Part Number:

ülinder

1¾ 2 2 21/2

Ν	FPA	MOU	INTS

2	MF2	Rear Flange (11/2"-6	" Bore)							
1	ME3	Front Mounting Hole	es (8"-	12" Bore)						
2	ME4	Rear Mounting Holes (8"-12" Bore)								
1	MP1	Rear Pivot Clevis (11/2"-12" Bore)								
3	MP2	Rear Pivot Clevis, R	lemov	able (11⁄2"-6" Bore)						
4	MP4	Rear Fixed Eye Mou	unt, Re	emovable (11⁄2"-6" Bore)						
4	MS1	Front & Rear End Ar	ngle (1	1⁄2"-8" Bore)						
2	MS2	Side Lug (11/2"-8" B	ore)							
1	MS4	Bottom Tapped Hol	es (1½	2 -12" Bore)						
1	MT1	Front Trunnion (11/2"-8" Bore)								
2	MT2	Rear Trunnion (11/2"-8" Bore)								
4	MT4	Intermediate Trunnie	Intermediate Trunnion (11/2"-8" Bore)							
1	MX0	No Mount (11/2"-12"	Bore)							
0	MX1	Extended Tie Rods	- Head & Cap (1½"-12" Bore)							
3	MX2	Extended Tie Rods	(Cap) (11/2"-12" Bore)							
2	МХЗ									
4	CL	JSHIONS	6	SEALS						
	Descr	iption	7	BUNA (-30° to 250° F)						

Series MH

Hydraulic-Pneumatic Devices

Pressure Boosters Air Oil Tanks Accumulators

		Page
	Principles and Operation	136
	Features	137
Pressure	Dual-Pressure Booster	138-139
Boosters	Boosters Single-Pressure Booster	140-141
	Applications	142
	Engineering Data	143-144
Air Oil	Features and Benefits	144
Tanks	Selection and Dimensional Data	145
Nitrogen Oil	Dimensional Data	146
Accumulators	Features / Application / Parts List	147

Milwaukee Cylinder offers additional products to help complete your system needs. **Pressure Boosters** are ideal for limited operation applications requiring intermittent high pressure when you only have low-pressure air. **Air Oil Tanks** supplement a booster system by providing a source of low pressure oil, while also providing an outlet for entrapped air. **Accumulators** can improve overall system efficiency.

Booster Principles and Operation

 Low pressure air enters the input section of the booster. It pushes against a large area piston. For example, if a 100 PSI air supply pushes against a 4" diameter piston, it is working against an area of approximately 12.6 square inches, for a total force of 1,260 pounds.

1600 PSI

- This total force is exerted by means of the piston rod, or ram, to the output section of the booster. The output section contains a hydraulic fluid. Just the end of the rod applies pressure to this fluid.
- 3. Let's say that the rod end has a 1" diameter. Its area is about .8 square inches. Divide the .8 square inches into the total applied force of the 1,260 pounds and the result is 1,590 pounds per square inch. We have transformed 100 PSI into 1,600 PSI, or a ratio of 16 to 1.

HOW A BOOSTER WORKS

A booster, or pressure intensifier, is a device that amplifies available line pressure in order to perform work requiring much higher pressure. It operates a hydraulic cylinder without the need for a hydraulic power unit. A booster is basically a cylinder and is similar in internal design, except that the rod end of the piston does not extend outside. The rod becomes a ram for hydraulic fluid. A booster is equivalent to a transformer, or pulley system, in that it changes the ratio of pressure input to pressure output but does not amplify power. Low pressure air, as found in most plants or shops, is connected to the large cylinder. Pressures are typically 80 to 100 PSI. This low pressure is converted by the booster to a much higher hydraulic pressure on the output side. This discharge has an amplified pressure potential equal to the product of the supply pressure and the booster ratio. Total power is not changed, as the low pressure input air must operate against a large area piston in order to produce high pressure from a much smaller surface area.

Standard boosters are available in ratios running from approximately 2:1 up to 36:1. In the selection of a particular booster (for details, see page 143), not only does the ratio have to be taken into account, but also the output volume has to be matched to the cylinder which the booster will drive.

What does the working cylinder see?

In our example above, we have an output of 1600 PSI hydraulic pressure. When this 1600 PSI is fed to a cylinder, the total area of the piston in the cylinder is now under a pressure of 1600 PSI! Therefore, instead of an air cylinder which would have to work under 100 PSI air pressure, we can now have a cylinder working under 1600 PSI hydraulic pressure. True, this cylinder will only perform work at this pressure through a volume of fluid in the cylinder that is equal to the same volume displacement in the booster, but for many operations, this volume displacement at such increased pressures is completely satisfactory.

Operating power

In the example above, shop air is used as the power source, as this is the most common way boosters are used. It is, however, quite possible to use oil as the operating power source, particularly for extremely high pressure applications. For example, if you need to develop 40,000 PSI and had a choice of 80 PSI air or 3,000 PSI oil, the air booster ratio would be 500:1 and the oil only about 13:1. It's obvious that using an oil to oil booster system would be far less expensive. Standard boosters are air to oil only.

When should boosters be used?

Typical applications for boosters are shown on page 128. Without going into a list of such applications, let's see when you are better off using a booster rather than a complete hydraulic system. Keep in mind that boosters will never replace the pump-cylinder method of work ability...nor are they intended to do so. Therefore, as a general statement, you use a booster when intermittent high pressure is required in a limited operation, and all you have is low pressure air. In all of the published applications, there is really no exception to this general rule. The reason for this is that boosters and cylinder combinations are not intended for rapid cycling with high pressures: i.e., their total power is limited.

Now that we've eliminated the negative, let's take the positive approach. You need to clamp a fixture into position for a work application. You have 100 psi shop air. An air cylinder operating under 100 psi will simply not hold the fixture in position in the intended application. Here's an ideal spot for a booster and hydraulic cylinder. As a plus, remember that the hydraulic cylinder can be controlled in its clamping action better than an air cylinder. By using a Dual Pressure Booster (Model BA), the clamping cylinder will travel rapidly toward the fixture, under light pressure, and then will, at the end of its travel, exert high pressure just as it clamps.

Cost Ratio. Another reason for using boosters is the cost ratio of a booster system vs. pump system. You have a machine which requires a linear actuator pressure of 5,000 PSI. If you were to design in a complete 5,000 PSI hydraulic system into this one machine, it could cost you many times a booster system! Again, remember that we are talking about one machine requiring intermittent high pressure.

Long Holding Times. Another case is where you want to exert a high pressure for a long time, such as maintaining pressures on printing rolls. A booster-cylinder system will maintain a continuous pressure with very little power input. In a pump-cylinder system, the pump must be kept in continual operation. (In order to achieve such holding pressure, there must be a relief valve inserted in the system.)

Extreme High Pressures. Pressures over 10,000 PSI can be obtained with special boosters while virtually impossible with ordinary rotary pumps. When you require an inexpensive way of achieving high pressure, even up to 50,000 PSI, the booster is the answer.

Series H

Series MH

Series LH

Booster Features

BOOSTER FEATURES

1. Booster Barrel

The barrel is of steel tubing, honed to a fine finish and hard chrome plated. This provides superior sealing power, minimum friction and maximum seal life.

2. Rod

Made of high strength steel, induction hardened. It is grounded and polished to a low micro finish, and then chrome plated to resist scoring and corrosion, for maximum life.

3. Rod Seals

Rod seals are of *Milwaukee Cylinder*'s high quality, stacked vee construction. They are specifically designed for high pressure hydraulic use, and their performance record has proven their long lasting, low leakage capability.

4. Nozzles

Steel nozzles are externally removable for replacing seals without disturbing booster assembly or tie-rod torque. Four self-locking nuts require only a standard shop wrench for removal.

5. End Caps

Heavy duty end caps are machined from solid, durable steel. All mountings are rigidly attached by either threading or welding. All mountings are expertly machined to provide accurate alignment on matched beds or mounting surfaces.

6. Tie Rods and Nuts

Tie rods are constructed from medium carbon steel, with a yield strength of 125,000 PSI. Threads are accurately machined for rigid engagement of the nuts. Nuts are high strength, self-locking type.

7. Piston

Precision machined from high strength iron alloy. The piston is pilot fitted and threaded to the rod. "U" cup seals are supported by back-up washers.

8. End Cap Seals

The barrel is sealed to the end caps with a high temperature, compression type gasket that seals over the entire face of the tube end.

9. Ports

Large, unrestricted ports conforming to NFPA standards are provided. They can be rotated to any 90° position in relation to each other and the booster mounting. Dry seal, national pipe threads are standard with SAE straight thread ports, oversized ports and metric ports available upon request.

Dual Pressure Boosters – Model BA

How a Dual Pressure Booster Works

1. Low pressure air is applied to the large surface piston during the entire work stroke. The input pressure of BA Boosters is rated at 250 PSI air.

 The rod advances through hydraulic fluid that is not yet contained under pressure. The rod is traveling under the same pressure as the air supply.

3. When the ram enters the high pressure seal, it immediately boosts the hydraulic pressure up to the rated value. Because of the extra ram seal assembly, the output pressure of this model is limited to 3,000 PSI.

4-Inch Minimum Stroke

Series BA Boosters must have a minimum of 4-inches of stroke.

DUAL PRESSURE BOOSTERS

In *Milwaukee Cylinder*'s Model BA Booster, the high pressure output is applied only after the ram has entered the secondary, or high pressure seal. This allows a low pressure approach stroke and a high pressure work stroke where the working ram travels only a short distance under high pressure, as when a part needs to be clamped in position for another operation. Model BA boosters are self bleeding and an external valve in the inlet is not required.

RAPID TRAVERSE, AUTOMATIC SEQUENCING WITH BA BOOSTER

Below the circuit shows the use of a double-acting cylinder with rapid traverse at low pressure and sequencing to high pressure when the load is picked up. When the air valve is shifted, the left air-oil tank forces oil through the booster and extends the cylinder. When the load is picked up, the timer valve ports air to the booster for a high pressure output to the cylinder. On the return stroke, the right air-oil tank retracts the cylinder.

Series H

Series A

MODEL BA 11 - No Tie Rod Extension

MODEL BA 10 - Tie Rod Extended Both Ends MODEL BA 12 - Tie Rod Extended Rod End MODEL BA 13 - Tie Rod Extended Blind End

MODEL BA 42 - Side Lug Mounting

MODEL BA 41 -

OTHER MOUNTING STYLES AVAILABLE UPON REQUEST ADD 2" TO REQUIRED STROKE FOR BA BOOSTERS

TABLE BA

Bore Ø	E	К	AA	BB	DD	EE	KK	NT	RR max.	SB	SN	SS	ТВ	TN	TS
2 ½	3	7⁄16	3.10	11/8	⁵⁄16 -2 4	3/8	6¾	³ ∕8-16	53/4	7/16	23⁄8	3	5/8	1¼	3¾
31/4	3¾	1/2	3.90	13⁄8	3⁄8-24	1/2	7¾	1⁄2-13	63⁄4	9⁄16	25⁄8	31⁄4	3⁄4	11/2	43⁄4
4	41⁄2	1⁄2	4.70	1¾	3⁄8-24	1⁄2	7¾	1⁄2-13	6¾	⁹ ⁄16	25⁄8	31⁄4	1	21/16	5½
5	51⁄2	5⁄8	5.80	1 ¹³ ⁄16	1⁄2-20	1/2	8	5⁄8-11	7	¹³ ⁄16	21/8	31/8	1	2 ¹¹ /16	61/8
6	6½	5⁄8	6.90	1 ¹³ ⁄16	1⁄2-20	3⁄4	9	³ ⁄4-10	8	¹³ ⁄16	31⁄8	35⁄8	11/8	31⁄4	71/8
8	81⁄2	3⁄4	9.10	25/16	⁵⁄8 -18	3⁄4	91⁄8	³ ⁄4-10	81⁄8	¹³ ⁄16	31⁄4	3¾	11/8	41⁄2	91/8
10	105⁄8	7⁄8	11.20	2 ¹¹ /16	3⁄4-16	1	101/8	1-8	91⁄8	1 ½16	41⁄8	45%	1%	51⁄2	123⁄8
12	123⁄4	7⁄8	13.30	211/16	3⁄4-16	1	113⁄8	1-8	103⁄8	1 ¹ ⁄16	45⁄8	51/8	11/2	71⁄2	141/2
14	143⁄4	1	15.40	33⁄16	7⁄8-14	11⁄4	13%	11⁄4-7	12%	15⁄16	5½	51/8	21⁄4	83⁄8	17

www.milwaukeecylinder.com

Pressure Limitation Rated Output:

Design Guide

How a Single Pressure Booster Works

1. Low pressure air is applied to the large surface piston during the entire work stroke. The input pressure of BD Boosters is rated at 250 PSI air.

2. The rod of the BD booster is constantly under high pressure throughout the entire work stroke. It has but a single seal assembly.

 Oil flows out, and back in, the same port on the high pressure end of the BD booster. Make up oil is provided through an external check valve or needle valve.

Milwaukee Cylinder's Model BD Boosters are used where high pressure output is required during the entire work stroke of the cylinder. This design is used for all output pressures and exclusively with special boosters where pressures are above the normal 3,000 PSI. Its single rod seal assembly constantly surrounds the rod. Because of its simpler design, model BD is not self bleeding and more care must be taken in bleeding out air when installing.

BD BOOSTER WITH SINGLE-ACTING CLAMPING CYLINDER

The circuit shows a BD booster powering a short stroke, spring return cylinder. A simple valve on the input line to the booster can be either manually or automatically operated. Input to the booster is kept on as long as the clamping action of the cylinder is required. Once removed, the internal spring in the cylinder returns the cylinder piston which, in turn, returns the oil to the booster port.

140

Series H

Series MH

Hyd-Pneu Devices
Dimensional Data Model BD, Pressure Boosters

MODEL BD 11 - No Tie Rod Extension

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Power Units/Valves

Design Guide

141

milwaukee

MODEL BD 10 - Tie Rod Extended Both Ends MODEL BD 12 - Tie Rod Extended Rod End MODEL BD 13 - Tie Rod Extended Blind End

MODEL BD 42 - Side Lug Mounting

MODEL BD 41 -Tapped Holes in Caps Flush Mounting

OTHER MOUNTING STYLES AVAILABLE UPON REQUEST

▼	T	Ά	B	L	Ε	B	D	
_								

Bore	E	K	AA	BB	DD	EE	KK	NT	RR	SB	SN	SS	ТВ	TN	TS
Ø									max.						
2 ½	3	7⁄16	3.10	11/8	5⁄16-24	3⁄8	51⁄4	³ %-16	6	⁷ ⁄16	23⁄8	3	5⁄8	11⁄4	3¾
31⁄4	3¾	1⁄2	3.90	13⁄8	3⁄8-24	1⁄2	6	1⁄2-13	61⁄2	9⁄16	25⁄8	31⁄4	3⁄4	11/2	43⁄4
4	41⁄2	1/2	4.70	13⁄8	3⁄8-24	1/2	6	1⁄2-13	71/16	9⁄16	25⁄8	31⁄4	1	21/16	51⁄2
5	51/2	5⁄8	5.80	1 ¹³ ⁄16	1⁄2-20	1/2	6¼	5⁄8-11	73⁄8	¹³ /16	21/8	31⁄8	1	211/16	61/8
6	61⁄2	5⁄8	6.90	1 ¹³ ⁄16	1⁄2-20	3⁄4	7	3⁄4-10	81⁄8	¹³ ⁄16	31⁄8	35⁄8	11/8	31⁄4	71⁄8
8	81⁄2	3⁄4	9.10	25⁄16	⁵‰ -18	3⁄4	71⁄8	3⁄4-10	81⁄8	¹³ ⁄16	31⁄4	33⁄4	11/8	41⁄2	91⁄8
10	105⁄8	7⁄8	11.20	211/16	3⁄4-16	1	85⁄8	1-8	93/8	1 ½16	41⁄8	45⁄8	1%	51⁄2	123⁄8
12	12¾	7⁄8	13.30	211/16	3⁄4-16	1	91⁄8	1-8	91/8	1 ¹ ⁄16	45⁄8	51⁄8	11/2	71⁄4	141⁄2
14	143⁄4	1	15.40	33⁄16	7⁄8-14	11⁄4	101/8	11⁄4-7	111/8	1 5⁄16	51/2	51⁄8	21⁄4	8%	17

www.milwaukeecylinder.com

Booster Applications

Save Space and Weight

In many applications, booster driven cylinders can replace an extremely large, low pressure air cylinder with a small, efficient, high pressure hydraulic cylinder. Coupled with reduced circuitry, the overall weight of a machine can be reduced , as well as the total space required.

Lower Cost

A booster system is less expensive than an overall hydraulic system with its pumpmotor requirements. They also require only a fraction of the air of a direct cylinder installation. Hydraulic requirements are also much smaller to operate a given function.

Smoother Power

Compared to air, boosters provide work cylinders with the smooth, efficient power of a hydraulic installation. When such power is required, and installations are limited to smaller volumes, boosters are ideal.

Points of Consideration

- 1. Plant air distribution system must be capable of maintaining the required pressure to the booster.
- 2. Regulators should be the relieving type. A leaky poppet could result in a dangerous pressure rise.
- 3. Directional control valves and air conditioners should have ports at least as large as the booster.
- Always bleed air from the hydraulic circuit when installing booster systems. Type BA boosters are self bleeding.

A *Milwaukee Cylinder* designed special booster featuring a 10" bore, 60" stroke and a 5½" rod. This booster, mounted on the side of a steel "I" beam, converts a 3,000 psi oil input to an 8,000 PSI output of an ethylene-glycol solution with a total high pressure displacement of 1,400 cubic inches. The booster also had to be designed to operate over a temperature range from -65° to +100° F.

APPLICATIONS FOR BOOSTERS

High Pressure From Shop Air

One of the principle applications for boosters is in the conversion of low pressure shop air to high pressure hydraulic operation for a specific function where a hydraulic cylinder is required. Many operations require the smooth power inherent in a hydraulic cylinder, yet do not require the expenditure for a complete hydraulic installation. The small, yet powerful movement of a booster driven hydraulic cylinder can be used to hold a piece for riveting, as a spot welding clamp, for punching, piercing, forming, crimping, bending, stamping, shearing, marking, etc. The complete installation of booster, air-oil tank and cylinder can be mounted directly on the equipment itself.

Testing

Testing of manufactured parts for physical strength, leaks or burst rating can easily be accomplished with a booster-cylinder combination or a booster alone. A hydraulic cylinder will give a precise, high pressure force for mechanical testing, and a booster can be linked up directly, to a die casting, for instance, to test for leaks.

Fluid Transfer

Fluids that are difficult or impossible to transfer with a conventional pump can be fed through a valve-booster combination. Depending on the type of fluid, boosters can be produced with special metals, such as stainless steel.

Liquid Injection

High pressure injection of liquids are readily handled with a booster. Such liquids, injected into high pressure gas lines or containers, might include lubricants, antifreeze or odorants.

Holding Pressures

Long holding pressures required in vulcanizing, laminating, bonding or curing can be readily maintained without drawing power or generating heat, except for making up any leakage loss.

A booster can maintain accurate pressure levels under such static conditions for an indefinite time.

High Pressures

Extremely high pressure, up to 50,000 psi, have been achieved with special boosters. Such high pressures would be impossible with an ordinary hydraulic rotary pump.

High Pressure Hydraulic to Cylinder

Ξ

Series

Series A

NM

Series

Series H

DETERMINING CORRECT BOOSTER SIZE

Booster size is determined by the high pressure load of the cylinder. In a single pressure system (Model BD), the entire cylinder stroke is the load cycle. In a dual system (Model BA), only the power stroke of the cylinder is considered in the booster calculation.

 Based on load requirements, select a cylinder bore size that will provide an adequate safety margin.

Example: Load: 4500 lbs. From the cylinder selector chart, choose a thrust of 4909 lbs. Cylinder bore is therefore 2½", and input pressure is 1,000 PSI.

 Knowing the stroke required for the cylinder, calculate the volume of oil required for full extension under load pressure. This is the piston area times cylinder stroke. It is important to note that the required volume should not be underestimated. Therefore, add a minimum of 25% to the calculated volume as a safety factor. From the cylinder chart, area is 4.909 in². (You require a 2["] stroke.) Volume = 4.91 x 2 x1.25 = 12.25 in³

 Divide the hydraulic system pressure by the available shop air pressure to determine booster ratio.

Booster Ratio = 1000/80 = 12.5

4. From the booster ratio chart, select the required booster bore and rod sizes that will safely handle the booster ratio.

A booster ratio of 13.22 adequately covers the 12.5 ratio requirement. This gives the booster with a bore of 5" and a rod with a diameter of 1%". Reading down on the chart, the volume per in. of stroke is 1.49.

 To determine the booster stroke, divide the calculated high pressure oil volume (from section 2) by the vol/in of stroke. Add 2" for a BA booster.

Stroke = 12.28/1.49 + 2 = 10.24"

Push stroke force in pounds

Pressures of operating medium

From the above, you specify a cylinder with a bore of 2¹/₂" and a stroke of 2". You specify a booster with a 5" bore, a 1³/₄" rod and a 10¹/₄" stroke. From this information, you can determine specific mounting dimensions for BA boosters on page 139. (Other bore and rod combinations will also do the job.)

Cyl	inder	Req	juirements	

		•		FIE55	ules of op	erating m							
Cylinder Bore Ø	Piston Area Sq In.	50 PSI	60 PSI			250 PSI	500 PSI	750 PSI	1000 PSI	1500 PSI	2000 PSI	3000 PSI	
1 ½	1.767	88	106	141	177	353	442	884	1,325	1,767	2,651	3,534	5,301
2	3.142	157	189	251	314	628	786	1,571	2,357	3,142	4,713	6,283	9,426
2 ½	4.909	245	295	393	491	982	1,227	2,455	3,682	4,909	7,364	9,818	14,727
31⁄4	8.296	415	498	664	830	1,659	2,074	4,148	6,222	8,296	12,444	16,592	24,888
4	12.566	628	754	1005	1,257	2,513	3,141	6,283	9,425	12,566	18,849	25,132	37,698
5	19.635	982	1,178	1,571	1,964	3,927	4,909	9,818	14,726	19,635	29,453	39,270	58,905
6	28.274	1414	1,696	2,262	2,827	5,657	7,071	14,137	21,205	28,274	42,411	56,548	84,822
7	38.485	1,924	2,309	3,079	3,849	7,697	9,621	19,242	28,864	38,485	57,728	76,970	115,455
8	50.265	2513	3,016	4,021	5,027	10,053	12,566	25,133	37,699	50,265	75,398	100,530	150,795
10	78.54	3,927	4,712	6,283	7,854	15710	19,635	-	-	-	-	-	-
12	113.10	5655	6,786	9,048	11,310	22,620	28,275	-	-	-	-	-	-
14	153.94	7697	9,236	12,315	15,394	30,790	38,435	-	-	-	-	-	-
16	201.60	10,053	12,064	16,085	20,106	40,210	-	-	-	-	-	-	-
18	254.47	12,723	15,268	20,358	25,447	50,890	-	-	-	-	-	-	-
20	314.16	15,708	18,850	25,133	31,416	62,830	-	-	-	-	-	-	-

Booster Selection Booster Ratios (Condensed Selector Chart for input pressures of 100 psi on page 144.)

Booster Ram Sizes Bore Ø 5⁄8 13/4 4 41/2 5 1 **1**3⁄8 2 21/2 3 31/2 51/2 16.00 6.25 21/2 _ _ _ _ _ _ _ _ 5.59 10.56 2.64* 31/4 3.45* _ _ _ _ _ _ 16.00 8.46 4.00 4 5.22 2.56 _ _ _ _ _ _ 25.00 13.22 6.25 2.04 4.00 2.78 5 8.16 _ _ 19.04 4.00 2.25* 9.00 2.94 6 11.76 5.76 _ _ 8 33.85 16.00 7.11 5.22 2.56 20.90 10.24 4.00 3.16 2.12 25.00 4.00 10 32.65 16.00 8.16 6.25 4.94 3.31 11.11 _ _ 36.00 23.04 16.00 11.75 9.00 7.11 5.76 4.76 12 _ _ 14 31.36 21.78 16.00 12.25 9.68 7.84 6.48 _ Vol. Output .31 .78 1.49 3.14 2 40 4.91 7.07 9 62 12.57 15.90 19.63 23.76 /in stroke

*Not available in BA41 or BD41 mount.

milwaukee

Design Guide

143

Power Units/Valves

Manipulators

BOOSTER BORE & ROD DIAMETERS

The following chart quickly provides booster bore and rod diameters for basic discharge pressures when the input pressure is 100 PSI. Example: if required pressure to cylinder is 1500 PSI, read down column and select any rod and bore diameter desired, such as a 3" rod and a 12" bore. The left column shows that a displacement of 7.07 in³ per inch of stroke will result. Other combinations can, of course, be chosen at a glance for the most economical booster or for a booster that fits the installation requirements.

BOOSTER SELECTION CHART (at input pressure of 100 psi)

Displacement per inch of Stroke	Minim	Minimum Discharge Pressure							
(in³)	500	1000	1500	3000					
.31	-	-	21⁄2	-	5⁄8				
.78	21/2	31⁄4	4	-	1				
1.49	31⁄4	5	6	8	13⁄8				
2.40	4	6	-	10	13⁄4				
3.14	5	-	8	12	2				
4.91	6	8	10	14	21⁄2				
7.07	8	10	12	-	3				
9.62	8	12	14	-	31⁄2				
12.57	10	-	-	-	4				
15.90	12	-	-	-	41⁄2				
19.63	12	5							
23.76	14	-	-	-	51⁄2				
	Bore Size								

Maximum Pressure: **250 psi**

Max. Hydraulic Fluid Temerature: 400° F (205° C)

MILWAUKEE CYLINDER AIR OIL TANKS

Air-Oil Tanks serve several purposes in a booster system:

- They are used as a source of oil to compensate for any loss in the hydraulic system
- They can provide hydraulic pressure to return the cylinder to its starting position
- They provide an outlet for entrapped air in the hydraulic system.

The Air-Oil Tank literally contains air on top of oil. The air is under line pressure from the same source as the air used to operate the booster. A sight-gauge is mounted on the side of *Milwaukee Cylinder* Air-Oil Tanks so that the level of oil in reserve can be readily observed. When required, hydraulic fluid may be added through a port in the top of the tank after shutting off air pressure.

Features: *Milwaukee Cylinder* Air-Oil Tanks are manufactured with the same care and high quality materials as are all *Milwaukee Cylinder's* Boosters and Cylinders. Maximum pressure for these tanks is 250 psi. They are suitable for all hydraulic fluids up to 200° F (93° C). *Milwaukee Cylinder* Air-Oil Tanks incorporate the following high quality features:

- High strength, solid steel end caps with large fill and drain plugs for fast circuit filling
- Steel tubing sealed to each end cap with compression type gaskets
- Replaceable sight gauge enclosed in aluminum shield for maximum gauge protection
- A unique baffle system, inside both end caps, assures rapid intake and discharge with a minimum of churning, foaming and aeration.

Booster & Air-Oil Combination

By specifying a combination of a booster and air-oil tank, savings are obtained in space, cost and installation time. Tanks are mounted directly on the booster, using a common end plate and tie-rods. Due to the fact that air-oil tanks must always be used vertically, this combination is limited to a vertically mounted installation. When ordering this combination, specify

BAT or BDT depending upon whether a BA or BD booster is used. Tanks are selected with the same size bore as the booster. When determining length, subtract one "J" length from the overall combined length of the individual booster and tank lengths.

Series MN

Series H

Series MH

Series LH

SELECTING A TANK SIZE

If the tank is used as a source of pressure to return the cylinder, its size must be in excess of the total cylinder displacement, otherwise, oil will be injected into the air line. Tanks should also be large enough to replenish any hydraulic losses without the necessity of adding fluid too frequently. In the chart below, always select a tank volume equal to or slightly greater than the cylinder volume. After the cylinder volume is determined, it can be located on the chart. Note that a selection may be made with varying tank diameters and lengths. (If a booster-tank combination is required, select the tank diameter to match the booster diameter.)

AIR OIL TANK SELECTION CHART

Tank Bore	e Tank Length (in)																			
Ø (in)		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
31⁄4	in ³	26	32	37	44	51	59	66	73	80	88	95	102	109	117	124	131	139	146	153
4	Ð	39	48	56	67	78	89	100	111	122	133	144	155	166	177	188	199	210	221	232
5	m	61	76	88	105	122	139	157	174	191	208	225	243	260	277	294	311	328	346	363
6	20	88	109	127	152	176	201	226	250	275	300	325	349	374	399	424	448	473	498	523
8	oil	157	195	226	270	314	358	402	446	490	534	578	622	666	710	754	798	841	885	929
10		245	304	353	422	490	559	628	697	765	834	903	971	1040	1109	1178	1246	1315	1384	1453
12	sable	353	438	509	607	706	805	904	1003	1102	1201	1300	1399	1498	1597	1696	1795	1894	1993	2092
14)	481	597	692	827	962	1096	1231	1366	1500	1635	1770	1905	2039	2174	2309	2443	2578	2713	2847
Fluid Working Height (in)		3 1⁄8	3 7⁄8	4 ½	5 ¾	6 ¼	7 1⁄/8	8	8 7⁄8	9 ¾	10 5⁄/8	11½	12 ¾	13 ¼	14 ½	15	157⁄8	16 ¾	17%	18½

Φ

TN

3

su sw

V AIR OIL TANK DIMENSIONAL CHART

Tank Bore Ø (in)	E	J	к	AA	BB	DD	EE (NPTF)	LB	NT	SB	SN	SS	ST	SU	SW	TB	TN	TS	US
31⁄4	3¾	11⁄4	3⁄8	3.90	1¾	⅔-2 4	1⁄2	21⁄2	1⁄2-13	9⁄16	1%	1½	3⁄4	11⁄4	1⁄2	3⁄4	1½	43⁄4	53⁄4
4	41⁄2	11⁄4	3⁄8	4.70	1¾	3⁄8-24	1⁄2	21⁄2	1⁄2-13	9⁄16	13⁄8	1½	3⁄4	11⁄4	1⁄2	1	21/16	5½	61⁄2
5	51⁄2	11⁄4	⁷ /16	5.80	1 ¹³ ⁄16	1⁄2-20	1⁄2	21/2	5⁄8-11	¹³ ⁄16	13⁄8	11/8	1	1%16	¹¹ ⁄16	1	211/16	61/8	81⁄4
6	6½	11/2	⁷ ⁄16	6.90	1 ¹³ ⁄16	1⁄2-20	3⁄4	3	3⁄4-10	¹³ ⁄16	15⁄8	15⁄8	1	1%16	¹¹ ⁄16	11/8	31⁄4	71⁄8	91⁄4
8	81⁄2	11/2	^{9/} 16	9.10	25/16	⁵⁄s-18	3⁄4	3	3⁄4-10	¹³ ⁄16	15⁄8	1%	1	1%16	¹¹ ⁄16	11/8	41⁄2	91/8	111⁄4
10	10%	2	11/16	11.20	211/16	3⁄4-16	1	4	1-8	1 ½16	2	21⁄4	11⁄4	2	7⁄8	15⁄8	5½	123⁄8	141⁄8
12	12¾	2	¹¹ ⁄16	13.30	211/16	3⁄4-16	1	4	1-8	1 ½16	2	21⁄4	11⁄4	2	7⁄8	1½	71⁄4	1 4½	16¼
14	14¾	21⁄4	¹³ ⁄16	15.40	3 ³ ⁄16	⅔-1 4	11⁄4	41⁄2	11⁄4-7	1 5⁄16	23⁄8	21⁄4	1½	21⁄2	11/8	21⁄4	8¾	17	19¼

www.milwaukeecylinder.com

Side Lug Mount

MODEL 42

Hyd-Pneu Devices

SS + Tank Length

2 F

 \bigcirc

Ø

Power Units/Valves

Design Guide

145

milwauké linder

С

Dimensional Data & Repair Kits

Cylinder Code	Model No.	Size	Oil Capacity in ³	Gas Capacity in³	Length A	Ø B	Ø C	Thread Hole Depth D	Thread E	Port *F NPT	Seal Kit Code
3502-1005	NA2 - 05	1/2 Pint	14.5	16.2	8			ĺ			
3502-1001	NA2 - 1	Pint	29	30.7	12¾	23⁄8	-	-	-	3⁄4	3502-0-40
3502-1002	NA2 - 2	Quart	58	59.7	22						
3504-1002	NA4 - 2	Quart	58	70	91⁄8						
3504-1004	NA4 - 4	1⁄2 Gal	116	128	141⁄2						
3504-1008	NA4 - 8	1 Gal	231	243	23%	43⁄4	31⁄4	1⁄2	1⁄2 - 20	11⁄4	3504-0-40
3504-1012	NA4 - 12	1½ Gal	347	359	32¾						
3504-1016	NA4 - 16	2 Gal	462	474	41¾						
3506-1008	NA6 - 8	1 Gal	231	273	153/16						
3506-1012	NA6 - 12	11/2 Gal	347	388	19¼						
3506-1016	NA6 - 16	2 Gal	462	503	235/16	7	43⁄8	3/4	% - 18	11/2	3506-0-40
3506-1020	NA6 - 20	21/2 Gal	578	619	271⁄2						
3506-1032	NA6 - 32	4 Gal	924	965	39%						
3506-1040	NA6 - 40	5 Gal	1155	1196	471/8						
3508-1040	NA8 - 40	5 Gal	1155	1226	331/8						
3508-1062	NA8 - 62	71⁄2 Gal	1730	1801	44	91⁄2	53⁄4	1	3⁄4 - 16	2	3508-0-40
3508-1080	NA8 - 80	10 Gal	2310	2381	55%						

* Available with SAE straight thread; O-Ring port at no additional cost.

Nitrogen Oil Accumulators

NA SERIES PISTON-TYPE ACCUMULATORS

DESIGN FEATURES

Milwaukee Cylinder's Series NA Piston-Type Accumulators are of a sturdy, compact, cylindrical design, built to provide dependable performance at long service life. Series NA features:

- 1. Honed steel barrel, welded to the hydraulic steel end cap.
- Solid steel gas end cap, screwed in place for easy removal and seated with O-ring and back-up washer.
- 3. Lightweight, low inertia aluminum piston, reducing bounce, over travel, and shock when in operation.
- 4. Non-metallic wear rings provide piston to wall contact. Non-scoring, low frictional drag, these scarf cut rings also stop shock waves from reaching primary seal. The wear rings also provide a wiper type action, thus protecting the primary seal.
- 5. Proven O-ring balanced seal design with double back-up anti-extrusion rings.
- 6. Protected gas fill valve. This valve also incorporates a release valve for quick exhausting of the pre charge gas.

APPLICATION

Milwaukee Cylinder's Series NA Piston-Type Accumulators have a wide range of applications such as:

- Cushioning peak loads
- Shock absorbtion
- Compensating for circuit leakage
- Maintaining constant loading on holding circuits
- · Performing extremely fast cylinder cycles
- Reducing pump size and circuit horsepower
- A safety device-in case of pump failure-Hydraulic power is available to activate brakes or other locking devices.

Determination of the usable volume of oil obtained from a specific size Accumulator, under specific operating conditions, can be computed by using the formula $P_1V_1 = P_2V_2$ *(lsothermal)* where:

- P_1 = absolute precharge pressure (Gauge + 14.7) psia
- V₁ = Initial gas volume cubic inch
- P_{2} = Final pressure psia
- V_2 = Final gas volume cubic inch

Compute V_2 volume for both maximum and minimum operating pressure, (P₂). Subtracting the V₂ volume from the Accumulator total gas volume will result in the Accumulator oil volujes at both operating pressure limits. The difference between the two resulting oil volumes, is the usable volume of Accumulator oil.

When ordering parts specify Model No., Part No., Description, Serial No. and Quantity.

Part No.	Description	Qty.
1	Accumulator Shell	1
2	Piston	1
3	Wear Ring	2
4	O-Ring (Piston)	1
5	Backup Washer	2
6	O-Ring (End Cap)	1
7	Backup Washer	1
8	End Cap	1
9	Gas Valve	1
10	Bracket	1
11	Cap Screws	2

EXAMPLE FOR NA 4-4

Gas Capacity: 128 cubic inches Operating Pressure Range: 1500 to 2200 psi Pre-charge Pressure: 800 psi

@ 2200 psi $P_1 V_1 = P_2 V_2$ 814.7 x 128 = 2214.7 x V_2 $V_2 = 47.2$ cu.in. gas $V_1 - V_2 = 81.2$ cu.in. oil

@ 1500 psi $814.7 \times 128 = 1514.7 \times V_2$ $V_2 = 68.5 \text{ cu.in. gas}$ $V_1 - V_2 = 59.5 \text{ cu.in. oil}$

Usable Oil Volume

81.2 - 59.5 = 21.7 cu.in. (Based on Isothermal performance)

SPECIAL UNITS

Milwaukee Cylinder can supply you an Accumulator to do your job.

Accumulators for:

- 1. Fire-resistant fluids
- 2. Water operation
- 3. High pressure
 - 4. High and low temperature operation
 - 5. Special flange mounts for direct connection to check valves or manifold mounts.

These are some of the special applications which are available. Contact your local *Milwaukee Cylinder* representative or the factory direct with you requirements.

147

Hyd-Pneu Devices

Cyl Accessories

Manipulators

Cylinder Accessories

	Page
Linear Alignment Coupler	149
AMLOK [®] Rod Clamp	150-151
Flange Couplers and Weld Plates	152
Spherical Rod Accessories	153

Milwaukee Cylinder provides various cylinder accessories to maximize your cylinder's potential. Linear Alignment Couplers prevent binding and erratic movement caused by misalignment. Amlok[®] Rod Clamps hold position securely after motion has stopped. Additional accessories are detailed in this section, and also on the inside back cover of this catalog.

Dimensional Data Linear Alignment Coupler

Linear Alignment Coupler Dimensional Chart

Model No.	A Thread	B Body Ø	C Body Length	D Shank Length	E Thread Length	F Shank Ø	G Flats	H Flats	Max. Rated Load (lbs)	Max. Load @ Yield (lbs)
MC-312	5⁄16-24	7⁄8	11⁄4	1⁄4	5⁄8	5⁄16	1⁄4	3⁄4	2075	8300
MC-375	3∕8-24	7⁄8	11⁄4	1⁄4	5⁄8	5⁄16	5⁄16	3⁄4	2075	8300
MC-437	7⁄16-20	11⁄4	2	1/2	3⁄4	5⁄8	1/2	1	2500	10,000
MC-500	1⁄2-20	11⁄4	2	1/2	3⁄4	5⁄8	1/2	1	3500	14,000
MC-625	⁵ ∕8-18	11⁄4	2	1/2	3⁄4	5⁄8	1/2	1	4750	19,000
MC-750	³ ⁄4-16	13⁄4	25/16	1/2	11⁄8	³¹ / ₃₂	7⁄8	11/2	8500	34,000
MC-875	7⁄8-14	13⁄4	25/16	1/2	11⁄8	³¹ / ₃₂	7⁄8	11/2	9750	39,000
MC-1000	1-14	21/2	2 ¹⁵ /16	1/2	15⁄8	13⁄8	15⁄32	21/4	16,000	64,000
MC-1250	11⁄4-12	21/2	2 ¹⁵ /16	1/2	15⁄8	13⁄8	15⁄32	21⁄4	19,500	78,000
MC-1500	1½-12	31⁄4	43⁄8	¹³ ⁄16	21⁄4	13⁄4	11/2	3	33,500	134,000
MC-1750	1¾-12	31⁄4	43⁄8	¹³ ⁄16	21⁄4	13⁄4	11/2	3	33,500	134,000
MC-1875	11⁄8-12	3¾	57/16	7⁄8	3	2	11 %	31⁄2	60,000	240,000
MC-2000	2-12	3¾	57/16	7⁄8	3	2	11⁄8	31⁄2	60,000	240,000

NOTES:

All dimensions are subject to change by manufacturer.

Larger sizes, special designs and metric versions are available. Consult factory.

Use jam nut to lock coupler to rod when used with full diameter threads.

Use "Max. Rated Load" for 4:1 safety factor.

Eliminate Alignment Problems. Install a Linear Alignment Coupler.

Features...

- Reduces rod seal and bearing wear
- · Prevents binding and erratic movement caused by misalignment
- Permits a greater tolerance between cylinder centerline and mating member
- Works equally well in "push" or "pull" applications

Cyl Accessories

Design Guide

milwaukee Ylinder

AMLOK® Rod Clamp

milwaukee

Contact your *Milwaukee Cylinder* representative for product selection assistance.

AMLOK® TYPE RCH ROD CLAMP

- · Provides power-off clamping of rods and shafts
- Clamps are actuated by a spring/collet mechanism and unclamped by hydraulic pressure
- Designed to clamp components after the motion has stopped and to hold the position securely as long as the forces do not exceed the table values

W HOW AMLOK[®] TYPE RCH ROD CLAMP WORKS

HOW TO ORDER

Example: RCH - XXX XXX - 075 X	Exa
Rod Size - X.XX (inches) 100	1.00 150
Cylinder Bore Size - X.XX (inches)	No
Release Pressure - (psi divided by 10)	Мо
Select Options:	Мо
P - Proximity Switch (indicates unclamped postion) N - No Proximity Switch	whe

Example: RCH - 100 250 - 150 N

1.00" Rod - 2.50" Cylinder Bore 1500 psi Release Pressure No Proximity Switch

Movement in Load A directionis zero. Movement in Load B direction is .012" maximum when clamp is fully locked

Series H

Series A

Dimensional Data AMLOK[®] Rod Clamp

Rod Dia. 1	Rod Dia. Tolerance ²	Cyl Bore	AMLOK [®] Part No. RCH –	Min. Release Pressure _{psi} ³	Max. Holding Force ⁴	D ± .03	L ± .03	E ± .015	R ± .005	TF ± .005	FB ± .015	В ± .015	A ± .015	К ±.015	C ± .03	F ± .03	G ± .03	J ± .03	M ± .03	Port
.625	+.000 003	1.50	062 150-075 062 150-100 062 150-150	750 1000 1500	1100 1800 2250	4.37	3.55	1.63	1.625	3.437	.44	1.25	2.48	.23	.38	2.13	.75	.79	.78	SAE 4
1.000	+.000 003	1.50	100 150-075 100 150-100 100 150-150	750 1000 1500	1200 2000 2300	4.37	3.45	1.75	1.625	3.437	.44	1.63	2.76	.23	.50	1.88	.87	.79	.78	SAE 4
1.000	+.000 003	2.00	100 200-075 100 200-100 100 200-150	750 1000 1500	2900 5200 5600	5.37	4.37	2.25	2.050	4.125	.56	1.63	3.74	.23	.35	2.90	.85	1.00	0	SAE 4
1.000	+.000 003	2.50	100 250-075 100 250-100 100 250-150	750 1000 1500	2900 5200 6000	5.98	5.12	2.50	2.550	4.625	.56	1.63	4.13	.23	.50	3.40	1.00	1.50	0	SAE 4
1.375	+.000 003	2.00	137 200-075 137 200-100 137 200-150	750 1000 1500	2700 2700 5200	5.37	4.65	2.25	2.050	4.125	.56	2.13	3.74	.23	.50	3.00	1.00	1.50	0	SAE 4
1.375	+.000 003	2.50	137 250-075 137 250-100 137 250-150	750 1000 1500	2700 5200 6000	5.98	5.12	2.50	2.550	4.625	.56	2.13	4.13	.23	.50	3.50	.90	1.50	0	SAE 4
1.375	+.000 003	3.25	137 325-075 137 325-100 137 325-150	750 1000 1500	8200 11500 16000	7.75	6.50	3.25	3.250	5.875	.69	2.13	5.70	.28	.45	4.50	1.10	2.60	0	SAE 4
1.750	+.000 003	2.50	175 250-075 175 250-100 175 250-150	750 1200 2000	3500 5700 7500	6.00	5.91	2.50	2.55	4.630	.56	2.38	4.33	.32	.70	3.90	.96	2.44	.78	SAE 4
1.750	+.000 003	3.25	175 325-075 175 325-100 175 325-150	750 1000 1500	8200 11500 16000	7.75	6.50	3.25	3.250	5.875	.69	2.50	5.70	.30	.63	4.67	.93	2.60	0	SAE 4
1.750	+.000 003	4.00	175 400-075 175 400-100 175 400-150	750 1000 1500	8200 12000 17000	8.38	6.50	3.50	3.820	6.375	.69	2.50	6.10	.34	.50	4.375	1.225	2.20	0	SAE 4
2.000	+.000 003	3.25	200 325-075 200 325-100 200 325-150	750 1000 1500	8200 11500 16000	7.75	6.50	3.25	3.250	5.875	.69	2.68	5.70	.29	.58	4.50	1.10	2.60	0	SAE 4
2.000	+.000 003	5.00	200 500-075 200 500-100 200 500-150	750 1000 1500	8200 12000 17000	11.25	6.50	3.50	4.950	8.187	.94	2.75	6.10	.34	.50	4.375	1.225	2.20	0	SAE 4
2.500	+.000 003	4.00	250 400-075 250 400-100 250 400-150	750 1000 1500	6000 8000 15000	7.68	7.10	3.50	3.813	6.375	.69	3.14	6.10	.35	.56	4.77	1.23	3.00	.91	SAE 4
2.500	+.000 003	6.00	250 600-075 250 600-100 250 600-150	750 1000 1500	30000 36000 50000	12.75	9.00	5.00	5.730	9.437	1.06	3.25	8.85	.38	.75	3.625	1.125	3.00	0	SAE 4
3.000	+.000 003	6.00	300 600-075 300 600-100	750 1000	17000 22500	12.75	9.00	5.00	5.730	9.437	1.06	3.88	-	-	.38	4.88	1.1	3.11	0	SAE 8
3.000	+.000 003	7.00	300 700-075 300 700-100 300 700-150	750 1000 1500	30000 36000 50000	14.75	10.00	6.50	6.580	10.625	1.19	3.88	-	-	.75	7.325	1.375	4.73	0	SAE 8
3.500	+.000 003	8.00	350 800-075 350 800-100 350 800-150	750 1000 1500	40000 55000 80000	16.14	11.50	7.00	7.500	11.812	1.31	4.38	-	-	.90	8.93	1.32	5.35	0	SAE 10
4.000	+.000 005	8.00	400 800-075 400 800-100 400 800-150	750 1000 1500	40000 55000 80000	16.14	11.50	7.00	7.500	11.812	1.31	4.88	-	-	.90	8.875	1.365	5.35	0	SAE 10

¹ Other sizes available upon request.

 $^{\rm 2}$ Rod tolerances that exceed these limits will affect the holding force.

³ Maximum Hydraulic Release Pressure: 3000 psi

⁴ Holding forces are based on dry or mineral-oil lubricated shafts.

Dimensions are subject to change without notice.

Design Guide

Manipulators

Series MH

Series LH

ØF

PART#	ROD	В	С	D	н	1	J	L	М	N	Р	MATERIAL
	DIA.											
ACFC-062	.625	.406	1.500	.562	45°	90°	.218	4	1.125	.250	.656	AISI 1144 CD
ACFC-100	1.000	.750	2.000	.875	30°	60°	.281	6	1.500	.375	1.063	AISI 1144 CD
ACFC-137	1.375	.938	2.500	1.000	30°	60°	.343	6	2.000	.375	1.438	AISI 1018 CD
ACFC-175	1.750	1.187	3.000	1.250	22.5°	45°	.343	8	2.375	.500	1.813	AISI 1018 CD
ACFC-200	2.000	1.438	3.500	1.625	15°	30°	.406	12	2.688	.625	2.063	AISI 1018 CD
ACFC-250	2.500	1.875	4.000	1.875	15°	30°	.406	12	3.188	.750	2.625	AISI 1018 CD
ACFC-300	3.000	2.375	5.000	2.375	15°	30°	.531	12	4.000	.875	3.125	AISI 1018 CD
ACFC-350	3.500	2.625	5.875	2.625	15°	30°	.656	12	4.688	1.000	3.625	C1119 MOD
ACFC-400	4.000	3.125	6.375	2.625	15°	30°	.656	12	5.188	1.000	4.125	C1119 MOD
ACFC-450	4.500	3.625	6.875	3.125	15°	30°	.656	12	5.688	1.500	4.625	C1119 MOD
ACFC-500	5.000	4.000	7.375	3.125	15°	30°	.656	12	6.188	1.500	5.125	C1119 MOD
ACFC-550	5.500	4.500	8.250	3.875	15°	30°	.781	12	6.875	1.875	5.625	C1119 MOD

VELD PLATES

										
PART#	SIZE	E	F	G	н	I	К	L	м	MATERIAL
ACWP-062	.625	.500	2.000	.250	45°	90°	10 - 24	4	1.125	CD 1018
ACWP-100	1.000	.500	2.500	.250	30°	60°	1/4 - 20	6	1.500	CD 1018
ACWP-137	1.375	.625	3.000	.250	30°	60°	5/16 - 18	6	2.000	CD 1018
ACWP-175	1.750	.625	4.000	.250	22.5°	45°	5/16 - 18	8	2.375	CD 1018
ACWP-200	2.000	.750	4.000	.375	15°	30°	3/8 - 16	12	2.688	CD 1018
ACWP-250	2.500	.750	4.500	.375	15°	30°	3/8 - 16	12	3.188	CD 1018
ACWP-300	3.000	1.000	5.500	.375	15°	30°	1/2 - 13	12	4.000	CD 1018
ACWP-350	3.500	1.000	7.000	.375	15°	30°	5/8 - 11	12	4.688	A 36 HRS
ACWP-400	4.000	1.000	7.000	.375	15°	30°	5/8 - 11	12	5.188	A 36 HRS
ACWP-450	4.500	1.000	8.000	.375	15°	30°	5/8 - 11	12	5.688	A 36 HRS
ACWP-500	5.000	1.000	8.000	.375	15°	30°	5/8 - 11	12	6.188	A 36 HRS
ACWP-550	5.500	1.250	9.000	.375	15°	30°	3/4 - 10	12	6.875	A 36 HRS

Dimensional Data Spherical Rod Accessories

▼ SPHERICAL EYE BRACKETS

		0					DD DIA			
PART#	СВ	CD0005	DD	Е	F	FL	LR	м	MR	R
ACEB-05	1⁄2	.5000	¹³ ⁄ ₃₂	21⁄2	3⁄8	11/8	3⁄4	11/16	11/16	1.62
ACEB-07	3⁄4	.7500	17/32	3½	5⁄8	11%	11⁄4	1 ¾16	1 ¾16	2.56
ACEB-10	1	1.0000	21/32	41⁄2	3⁄4	21⁄4	1½	13⁄8	13⁄8	3.25
ACEB-13	13⁄8	1.3750	²¹ / ₃₂	5	7⁄8	3	21⁄8	2	2	3.81
ACEB-17	1½	1.7500	^{29/} 32	6½	7⁄8	31⁄8	21⁄4	21⁄8	21⁄8	4.94
ACEB-20	1¾	2.0000	1 ½2	7½	1	31⁄2	21⁄2	23⁄8	23⁄8	5.75
MATERIAL: 05	thru 10,	1144 Steel Forging	13 thru 2	0, Steel V	Weldment					

PIVOT PINS FOR SPHERICAL CLEVIS BRACKETS

PART#	CD	UL
ACPP-05	.49970004	1%16
ACPP-07	.74970005	21/32
ACPP-10	.99970005	21⁄2
ACPP-13	1.37460006	35⁄16
ACPP-17	1.74960006	47/32
ACPP-20	1.99960007	415/16
MATERIAL: CD	1144 HEAT TREATMEN	F: Nitrotec

▼ SPHERICAL ROD EYES

PART#	CD0005	A	CE	EX	ER	LE	КК	JL
ACRE-05	.5000	11/16	7⁄8	7⁄16	7⁄8	3⁄4	7⁄16 - 20	7⁄8
ACRE-07	.7500	1	11⁄4	²¹ / ₃₂	11⁄4	11⁄16	3⁄4 – 16	1 5⁄16
ACRE-10	1.0000	1½	11 1/8	7⁄8	13⁄8	17⁄16	1 – 14	1½
ACRE-13	1.3750	2	21⁄8	1 3⁄16	1 ¹³ ⁄16	11 %	1¼ -12	2
ACRE-17	1.7500	21⁄8	21⁄2	117/32	23⁄16	21⁄8	1½ -12	21⁄4
ACRE-20	2.0000	21/8	23⁄4	13⁄4	25⁄8	21⁄2	1% -12	23⁄4
MATERIAL: D	uctile Iron Casting							

SPHERICAL CLEVIS BRACKETS

Ť

PART#	E	F	М	R	CD	CF	CW	DD	FL	LR	MR
ACCB-05	3.00	.50	.50	2.05	.500	.44	.50	.41	1.50	.94	.62
ACCB-07	3.75	.62	.88	2.76	.750	.66	.62	.53	2.00	1.38	1.00
ACCB-10	5.50	.75	1.00	4.10	1.000	.88	.75	.53	2.50	1.69	1.19
ACCB-13	6.50	.88	1.38	4.95	1.375	1.19	1.00	.66	3.50	2.44	1.62
ACCB-17	8.50	1.25	1.75	6.58	1.750	1.53	1.25	.91	4.50	2.88	2.06
ACCB-20	10.62	1.50	2.00	7.92	2.000	1.75	1.50	.91	5.00	3.31	2.38
MATERIAL: Steel Weldment											

Cyl Accessories Manipulators

Design Guide

Industrial Manipulators

Pow'r Arm[™] and Pow'r Reach[™] Industrial Manipulators

from *Milwaukee Cylinder* provide safe and efficient means to lift and locate loads up to 2,000 lbs. They use hydraulic power to lift, and manual operator movement to locate the load. Pow'r Arm[™] units are typically mounted to a vertical surface at a machine or press to aid the operator in loading heavy tooling, dies or work pieces of up to 2000 lbs. Pow'r Reach[™] provides greater vertical travel and reach for loads up to 750 lbs. Mounting options include floor mount, dolly mount, and overhead mount.

		Page
Pow'r Arm™	Features & Benefits	156
Manipulators	Technical Information	157
Pow'r Reach™	Features & Benefits	158
Manipulators	Technical Information	159

MPA-Series Pow'r Arm™

Manipulators

Features

- Hydraulic power to lift, operator movement to locate the load
- 12 inch and 24 inch vertical travel
- Electric powered, self-contained, stand-alone hydraulic power unit controls vertical travel with manual horizontal positioning of the load by the operator
- Lift speeds of 22 in/min. to 117 in/min.

Safe, convenient positioning of loads up to 2,000 lbs.

- Quick, easy lifting and positioning of heavy dies, tooling and parts
- One-man control saves time and labor
- Mounts directly on machine, I-beam or vertical surface
- Vertical travel is easily controlled with 8.0 ft remote pendant push-button control
- Articulated arm simplifies positioning of load, folds away for convenient storage
- Metering orifice slows downward motion
- 2-speed control permits fast movement and precise positioning of load

Large and complex cutters are often impossible to handle without some mechanical assistance. The Pow'r Arm[™] was adapted for this specific application.

In automated forging processes, hot metal blanks are fed automatically into a progressive die. Each die segment may weigh several hundred pounds and must be handled quickly, easily and safely.

Large shear blades are used to cut steel bars and billets. When these blades become worn the Pow'r Arm[™] performs speedy removal and replacement of the blades safely with minimal disruption to the process.

POWER SUPPLY

Pow'r Arm[™] includes a complete, self-contained, stand-alone power supply. It consists of a pump, motor, coupling, coupling adapter, hydraulic reservoir and controls.

The electric-hydraulic units have a pre-set relief valve to prevent overloads and a check valve which retards descent of the load if the power fails. Pressure settings for relief valves are set as shown in the "Hydraulic Specifications" table to the right.

Hydraulie	c Specif	Electrical Specifications									
Model Number	Rating		Travel Speed		AC		Phase	Amps			
	(psi)	(gal)	(in/min)		Voltage	Hz					
MPA-25	300	2.0	117		115*	60/50	1	9			
MPA-50	300	2.0	54		220	60/50	1	7			
MPA-100	300	2.0	37		440	60/50	3	3.5			
MPA-200	300	2.0	22	,	* STD Unl	TD Unless otherwise specified.					

HOW TO ORDER

Operating Specs. - Model MPA

Rated Load:	250-2000 lbs.
Working Radius:	24-36 in.
Pump:	1.5 GPM, 3450 RPM
Pressure Rating:	300 psi
Motor:	0.5 hp, 3450 RPM, C Frame
Reservoir Capacity:	2.0 gal.
Lowering Power:	Gravity (Controlled by Needle Valve)
Operating Controls:	2-button Up/Down Pendant
Electrical Requirements:	20 Amps, 115V / 60 Hz
Down Speed:	Adjustable with Needle Valve
Total Weigh: 560 lbs.	275-1600 lbs.

Safety Relief Valve

Relief valves are pre-set at the factory to prevent overloading of the cylinder arm assembly.

Dual Speed Control

The vertical travel is controlled by a hand held push-button pendant, connected to the hydraulic power unit. Dual speed provides maximum performance and control.

Integrated Hydraulic Controls

All hydraulic controls are integrated into compact manifold packages to minimize space and system hydraulic connections. Controls are designed to provide positive load holding.

DIMENSIONAL CHART

Load Cap.	Model No.		Dimensions (in)														Wt.
(lbs)		A	В	С	D	E	F	G	н	J	К	L	м	Ν	Р	S	
250	MPA-25	24.00	24.00	3.75	5.88	11.25	39.38	1.75	1.75	.43	.50	3.00	3.75	.50	.753/.755	12.00	275
500	MPA-50	24.00	24.00	4.50	7.25	17.43	77.38	4.00	2.00	.56	1.00	4.00	8.00	1.00	1.003/1.005	24.00	750
1000	MPA-100	30.00	30.00	5.50	8.50	19.15	75.81	4.50	3.50	.68	1.25	5.00	8.00	1.00	1.503/1.505	24.00	975
2000	MPA-200	36.00	36.00	6.50	10.75	22.75	78.12	6.00	4.00	.81	1.50	6.00	10.00	.75	1.503/1.505	24.00	1600

www.milwaukeecylinder.com

Manipulators

157

MPR- Series Pow'r Reach™

For fast, easy lifting and precise positioning of tombstones, vises and materials

- Available in 250 lbs or 750 lbs capacity
- 58-inch vertical travel, 8.5 foot reach, 350 degree rotation
- One-person control saves time and labor
- Low column profile for maneuverability
- Two-speed pendant control permits fast movement and precise positioning
- Special bearings prevent drifting of load

Standard Features

- 58" vertical travel
- · Self-contained hydraulic power unit for lifting with manual horizontal power
- Rapid up speed Full 58 inches travel in 15 seconds
- Vented reservoir with sintered metal breather filter
- Buna cylinder seals are standard; Viton seals available upon request

Series H

Series MH

Series LH

Series A

Series MN

Parts are selected from pallets and moved to working stations. The smooth, positive hydraulic control of the Pow'r Reach™ permits picking and positioning of expensive parts safely and precisely.

Portable dolly-mounted Pow'r Reach™ provides flexibility to accommodate a wide variety of applications. For stability, a counterweight is welded to the column of these models.

A Pow'r Reach™ is used to position parts in machining centers. It is useful and effective because of the ease and convenience with which the heavy parts are handled.

POWER SUPPLY

All Pow'r Reach[™] units include a complete self-contained electric-hydraulic power supply mounted on the column. The standard power supply is driven by a singlephase electric motor. Standard voltages, frequencies and motor specifications are in the table below. Custom configurations are available upon request.

HOW TO ORDER

Operating Specifications	Model MPR-25	Model MPR-75
Rated Load: Working Radius:	250 lbs. 102.00 in.	750 lbs 103.50 in.
Pump: Pressure Rating: Motor: Reservoir Capacity: Lowering Power: Operating Controls:	 1.5 GPM, 3450 RPM 600 psi 0.5 hp, 3450 RPM, C Frame 2.0 gal. Gravity, Controlled by Needle Valve 2-button Up & Down Pendant Control 	2.8 GPM, 1750 RPM 600 psi 1.5 hp, 1750 RPM, C Frame 3.0 gal. Hydraulic Power Unit Joystick, Variable Speed Control Proportional Valve
Electrical Requirements: Down Speed:	20 Amps, 115V / 60 Hz Adjustable with Needle Valve	30 Amps, 220V / 60 Hz Joystick Variable Speed Control
Mounting Data Mounting Bolt-Pull-Out Force: Total Weight, Floor-Mounted Pow'r Reach:	4000 lbs. Minimum 560 lbs.	7000 lbs. Minimum 1183 lbs.

Safety Relief Valve

Relief valves are pre-set at the factory to prevent overloading of the cylinder arm assembly.

Dual Speed Control

Standard on the MPR-25 for maximum performance and control. Variable speed proportional control is standard on the MPR-75 and optional on the MPR-25.

Integrated Hydraulic Controls

All hydraulic controls are integrated into compact manifold packages to minimize space and system hydraulic connections. Controls are designed to provide positive load holding.

DIMENSIONAL CHART

Load Cap.	Model No.		Dimensions (in)																		
(lbs)		A	В	С	D	н	J	К	L	М	N	Ρ	R	S	Т	U	V	W	X	Y	AC
250	MPR-25	102.00	95.50	47.50	7.50	53.00	.75	3.50	5.00	19.00	24.00	88.00	1.62	.755/.753	3.00	12.50	46.50	70.50	.56	18.00	22.00
750	MPR-75	103.50	97.06	49.06	8.75	55.50	1.00	4.00	6.50	17.50	24.00	89.50	2.00	1.005/1.003	4.00	12.50	46.50	70.50	.84	26.00	28.00

Power Units/Valves

Design Guide

Power Units and Valves

		Page
	Features	161
	Gear Pump	162
	Vane Pump	163
Power Units	With P & T Manifolds	164
	With D03 Manifolds	165
	Power Unit Matrix	166
	D03 Valves	167
Makaa	D03 Accessory Valves	168
Valves,	D03 Mounting Kits & Manifolds	169
Mounting Kits	D03 Valve Mounting Kits	170
& Manifolds	D05 Valves	171
	D05 Accessory Valves	172
	D05 Mounting Kits & Manifolds	173
	D05 Valve Mounting Kits	174
	Valve and Manifold Matrix (how to build a pump)	175
Worksheet	Milwaukee Cylinder Power Unit Worksheet	176

Milwaukee Cylinder Vertical Power Units are powerful performers for your general hydraulic power unit needs. Available in either Gear Pump (3000 psi) or Vane Pump (2000 psi) designs, these units really deliver with standard features and options needed to do the job right. These units are fully featured to give you the performance and value that you need. Available options and directional valves help you to customize the power unit for your application.

Vertical Power Unit Features

STANDARD FEATURES

Vertical Steel Reservoir with Sight Glass and In-tank Filter

- Return filter / breather with indicator gauge
- Locating the pump inside of the reservoir reduces noise

TEFC Motor

• Quality motor with fan cooling for durable performance

Pump Mounted Manifold

- P & T manifold for use with remote mounted valves
- D03 valve manifolds: 1, 2 or 4 station
- Manifold mounted gauge and snubber

Pressure Control

- Gear Pump Units have a relief valve in the valve manifold
- Vane Pumps Units have tank mounted pressure and volume controls

POPULAR OPTIONS

- Low oil level switch with high temperature (140° F)
- Heat exchanger

GEAR PUMPS

Maximum Pressure: 3000 psi

Elow Rates: .545-10.00 gpm

Reservoir Capacities: 10-30 gallons

Standard Motor: TEFC 1725 rpm

VANE PUMPS

Maximum Pressure: 2000 psi

Flow Rates: 4-8 gpm

Reservoir Capacities: 20 gallons

Standard Motor: TEFC 1725 rpm

Due to manufacturing processes and product improvements, please check website for the latest updates of products.

Design Guide

Vertical Power Units - Gear Pump

milwaukee

Valve Manifold

Idard andard

VERTICAL GEAR PUMP POWER UNITS

A Vertical Gear Pump Power Unit from Milwaukee Cylinder provides an effective solution for your production requirements. With a pressure range up to 3000 psi, these units serve as powerful partners for our H Series tie rod cylinders. Available flow ranges are .5 gpm, 1 gpm, 2 gpm, 5 gpm and 10 gpm. Other models with higher flow are available upon request (see Power Unit Matrix, page 166).

GPM

10.02

20

Four Station D03

Reservoir (gal)

Series H

Series MH

For additional details on gear pump and vane pump designs see:.

Page

* Model Number

190

SINGLE-STAGE GEAR PUMP POWER UNITS

HP

				(gu)	-Relief valve stand - #8 SAE porting sta
MCVEG-15-15-10-PT	1.5	120/240/1/60	0.545	10	P&T
MCVEG-15-35-10-PT	1.5	208/230/460/3/60	0.545	10	P&T
MCVEG-15-15-10-D31	1.5	120/240/1/60	0.545	10	Single Station D03
MCVEG-15-35-10-D31	1.5	208/230/460/3/60	0.545	10	Single Station D03
MCVEG-15-15-10-D32	1.5	120/240/1/60	0.545	10	Two Station D03
MCVEG-15-35-10-D32	1.5	208/230/460/3/60	0.545	10	Two Station D03
MCVEG-15-15-10-D34	1.5	120/240/1/60	0.545	10	Four Station D03
MCVEG-15-35-10-D34	1.5	208/230/460/3/60	0.545	10	Four Station D03
MCVEG-30-3-1-10-PT	3	208/230/460/3/60	1.14	10	P&T
MCVEG-30-3-1-10-D31	3	208/230/460/3/60	1.14	10	Single Station D03
MCVEG-30-3-1-10-D32	3	208/230/460/3/60	1.14	10	Two Station D03
MCVEG-30-3-1-10-D34	3	208/230/460/3/60	1.14	10	Four Station D03
MCVEG-50-3-2-10-PT	5	208/230/460/3/60	1.96	10	P & T
MCVEG-50-3-2-10-D31	5	208/230/460/3/60	1.96	10	Single Station D03
MCVEG-50-3-2-10-D32	5	208/230/460/3/60	1.96	10	Two Station D03
MCVEG-50-3-2-10-D34	5	208/230/460/3/60	1.96	10	Four Station D03
MCVEG-100-3-5-20-PT	10	208/230/460/3/60	5.01	20	Р&Т
MCVEG-100-3-5-20-D31	10	208/230/460/3/60	5.01	20	Single Station D03
MCVEG-100-3-5-20-D32	10	208/230/460/3/60	5.01	20	Two Station D03
MCVEG-100-3-5-20-D34	10	208/230/460/3/60	5.01	20	Four Station D03
MCVEG-200-3-10-30-PT	20	208/230/460/3/60	10.02	20	Р&Т
MCVEG-200-3-10-30-D31	20	208/230/460/3/60	10.02	20	Single Station D03
MCVEG-200-3-10-30-D32	20	208/230/460/3/60	10.02	20	Two Station D03

208/230/460/3/60

Electrical

20 *Please refer to Power Unit Matrix, page 166, for non catalog configurations.

Available Options (add option code to the end of the power unit model number):

HEG Heat Exchanger for Gear Style Pump

LOL Low Oil Level Switch with High Temperature (140° F)

MS Motor Starter (specify voltage)

MCVEG-200-3-10-30-D34

Vertical Power Units - Vane Pump

VERTICAL VANE PUMP POWER UNITS

A Vertical Vane Pump Power Unit from *Milwaukee Cylinder* provides a flexible solution for your hydraulic power unit needs.

When the system is at pressure and the volume requirement falls to zero, the pump automatically adjusts the output volume –

- Less heat
- Less wear and tear on the pump

Set Your Pressure!

- Pressure Compensated Pump
- Pump can be adjusted to provide the pressure that your system requires
 - Externally accessible user adjustable pressure setting
 - Maximum pressure 2000 psi

Set Your Flow!

- Variable Displacement Pump
- Pump can be adjusted to provide the flow that your system requires
 - Externally accessible user adjustable flow volume setting

Standard Motor: 1725 rpm

For additional details on gear pump and vane pump designs see:

Page 190

▼ SINGLE-STAGE VANE PUMP POWER UNITS

* Model Number	HP	Electrical	GPM	Reservoir (gal)	Valve Manifold - Relief valve standard - #8 SAE porting standard
MCVEV-50-3-4-20-PT	5	208/230/460/3/60	4	20	P&T
MCVEV-50-3-4-20-D31	5	208/230/460/3/60	4	20	Single Station D03
MCVEV-50-3-4-20-D32	5	208/230/460/3/60	4	20	Two Station D03
MCVEV-50-3-4-20-D33	5	208/230/460/3/60	4	20	Four Station D03
MCVEV-75-3-6-20-PT	7.5	208/230/460/3/60	6	20	P&T
MCVEV-75-3-6-20-D31	7.5	208/230/460/3/60	6	20	Single Station D03
MCVEV-75-3-6-20-D32	7.5	208/230/460/3/60	6	20	Two Station D03
MCVEV-75-3-6-20-D34	7.5	208/230/460/3/60	6	20	Four Station D03
MCVEV-100-3-8-20-PT	10	208/230/460/3/60	8	20	P&T
MCVEV-100-3-8-20-D31	10	208/230/460/3/60	8	20	Single Station D03
MCVEV-100-3-8-20-D32	10	208/230/460/3/60	8	20	Two Station D03
MCVEV-100-3-8-20-D34	10	208/230/460/3/60	8	20	Four Station D03

*Please refer to Power Unit Matrix, page 166, for non catalog configurations.

Available Options (add option code to the end of the power unit model number):

HEV Heat Exchanger for Vane Style Pump

LOL Low Oil Level Switch with High Temperature (140 $^{\circ}$ F)

MS Motor Starter (specify voltage)

163

POWER UNIT WITH P & T MANIFOLDS

SAE #8 Female

Pressure and Return

0

Ľ

B

For use with remote mounted valves.

Gauge

- 0.75

& Snubber

1.56

(4) Ø 9/16

Adjustable Relief Valve

100-3000 psi

GEAR PUMP

Flow Rates:

Max. Operating Pressure: 3000 psi

.545-10.00 gpm

10-30 gallons

Series MH

Series H

Standard Motor: 1725 rpm

Reservoir Capacities:

Series LH

Series A

Series MN

Hyd-Pneu Devices

Cyl Accessories

Manipulators

>

Power Units/Valves

VANE PUMP

Max. Operating Pressure: 2000 psi

Flow Rates: 4-8 gpm

Reservoir Capacities: 20 gallons

Standard Motor: 1725 rpm **POWER UNIT WITH**

1.04 _

P & T CONNECTIONS

Motor hp	Voltage	A (in)
0.5	115/208/230/1/60	9.92
0.5	208/230/460/3/60	10.44
0.75	115/208/230/1/60	9.92
0.75	208/230/460/3/60	9.92
1	115/208/230/1/60	9.92
1	208/230/460/3/60	10.92
1.5	115/208/230/1/60	10.92
1.5	208/230/460/3/60	12.98
2	115/208/230/1/60	11.98
2	208/230/460/3/60	12.97
3	115/208/230/1/60	13.37
3	208/230/460/3/60	14.43
5	208/230/460/3/60	15.06
7.5	208/230/460/3/60	17.56
10	208/230/460/3/60	17.56
15	230/460/3/60	23.03
20	230/460/3/60	23.03

POWER UNIT RESERVOIRS

Reservoir Size (gal)	B (in)	C (in)	D (in)	E (in)	F (in)	G (in)	H (in)
10	15.44	9.50	17.50	19.00	1.25	14.00	16.50
20	18.44	10.25	19.00	20.50	1.50	15.00	18.00
30	26.44	10.25	19.00	20.50	1.50	15.00	18.00

Due to manufacturing processes and product improvements, please check website for the latest updates of products.

POWER UNIT WITH D03 MANIFOLD

For use with 1, 2, or 4 station.

Motor hp	Voltage	A (in)
0.5	115/208/230/1/60	9.92
0.5	208/230/460/3/60	10.44
0.75	115/208/230/1/60	9.92
0.75	208/230/460/3/60	9.92
1	115/208/230/1/60	9.92
1	208/230/460/3/60	10.92
1.5	115/208/230/1/60	10.92
1.5	208/230/460/3/60	12.98
2	115/208/230/1/60	11.98
2	208/230/460/3/60	12.97
3	115/208/230/1/60	13.37
3	208/230/460/3/60	14.43
5	208/230/460/3/60	15.06
7.5	208/230/460/3/60	17.56
10	208/230/460/3/60	17.56
15	230/460/3/60	23.03
20	230/460/3/60	23.03

D03 MANIFOLD

No. of Stations	B (in)
1	10.25
2	12.38
4	16.63

V POWER UNIT RESERVOIRS

Reservoir Size (gal)	C (in)	D (in)	E (in)	F (in)	G (in)	H (in)	l (in)
10	15.44	9.50	17.50	19.00	1.25	14.00	16.50
20	18.44	10.25	19.00	20.50	1.50	15.00	18.00
30	26.44	10.25	19.00	20.50	1.50	15.00	18.00

Due to manufacturing processes and product improvements, please check website for the latest updates of products. www.milwaukeecylinder.com

GEAR PUMP

Max. Operating Pressure: 3000 psi

Flow Rates: .545-10.00 gpm

Reservoir Capacities:

10-30 gallons

Standard Motor: 1725 rpm

VANE PUMP

Max. Operating Pressure: 2000 psi

Flow Rates:

4-8 gpm

Reservoir Capacities: 20 gallons

Standard Motor: 1725 rpm

Design Guide

CONFIGURE YOUR POWER UNIT

Reservoir Style	Driver	Pump Type	Motor h		Flow Rate (nominal) gpm	Reservoir Size (gal)	Valve Manifold Type	Options
RESERVOIR STYLE	DRIVER	PUMP TYPE	MOTOR HP	MOTOR PHASE	FLOW RATE (NOMINAL) GPM	RESERVOIR SIZE (GAL)	VALVE MANIFOLD TYPE	OPTIONS
MCV = Vertical MCH = NFPA/JIC (Horizontal) MCLP = Low Profile MCL = L-shaped	E = Electric D = Diesel G = Gas	G = Gear V = Vane P = Piston	05 = .5 075 = .75 10 = 1.0 15 = 1.5 20 = 2.0 30 = 3.0 50 = 5.0 75 = 7.5 100 = 10 150 = 15 200 = 20 250 = 25 300 = 30 400 = 40 500 = 50 600 = 60 750 = 75 1000 = 100 1250 = 125	1 = Single (.5-3.0 hp) 3 = Three	.5 = .545 0.75 = .769 1 = 1.14 1.5 = 1.59 2 = 1.96 2.25 = 2.28 3 = 2.87 3.5 = 3.44 3.75 = 3.78 ● 4 = 4.0 5 = 5.01 ● 6 = 6.0 7 = 6.83 ● 8 = 8.0 8.5 = 8.65 10 = 10.0 12 = 11.84	03 05 10 20 30 35• 40 50 60 75 100 125	PT = Pressure and Tank Connections D31 = D03 Single Station D32 = D03 Two Station D34 = D03 Four Station D51 = D05 Single Station D52 = D05 Two Station D54 = D05 Four Station	HEG = Heat Exchanger for Gear Styr Pump HEV = Heat Exchang for Vane Styr Pump LOL = Low Oil Leve Switch with High Temp MS = (Voltage) – Motor Starter (specify voltage

 Avaliable on gear pumps only. Calculating hp Requirement

hp = Pressure (psi) x Flow (gpm) 1457

Recommended Reservoir Size

Gal = Flow rate (gal) X 3

Example: hp = 2500 (psi) x 10 (gpm) 1457 Example: 10 gpm X 3 = 30 gallon reservoir

hp = <u>2500</u> 1457 hp = 17.16

Motor size recommendation: 20 hp

Contact *Milwaukee Cylinder* for a quote on the power unit configuration that meets your application.

Vertical

NFPA/JIC Style

Low Profile

L-Shaped

Series MH

>

Hyd-Pneu Devices

Cyl Accessories

Series A

D03 Valves

D03 VALVES

For a complete Power Unit solution, use *Milwaukee Cylinder* D03 spool valves and accessory valves. Choose the valve style required for each circuit and add the accessory valves required to control flow rate, circuit pressure or hold pressure in a circuit.

- Mounting Pattern: D03
- Solenoid Connection: DIN

		D03 VALVES		
MODEL NUMBER	MAXIMUM PRESSURE	FUNCTION	SCHEMATIC SYMBOL	ELECTRICAL REQUIREMENTS
MCSV3-43C-24	5000	4 Way, 3 Position, Closed Center		24 VDC
MCSV3-43C-120	5000	4 Way, 3 Position, Closed Center		120 VAC
MCSV3-430-24	5000	4 Way, 3 Position, Open Center		24 VDC
MCSV3-43O-120	5000	4 Way, 3 Position, Open Center		120 VAC
MCSV3-43F-24	5000	4 Way, 3 Position, Float Center		24 VDC
MCSV3-43F-120	5000	4 Way, 3 Position, Float Center		120 VAC
MCSV3-43T-24	5000	4 Way, 3 Position, Tandem Center		24 VDC
MCSV3-43T-120	5000	4 Way, 3 Position, Tandem Center		120 VAC
MCSV3-42-24	5000	4 Way, 2 Position		24 VDC
MCSV3-42-120	5000	4 Way, 2 Position		120 VAC

MAXIMUM

PRESSURE

FUNCTION

milwaukee **Jlinde**r

SCHEMATIC SYMBOL

D03 ACCESSORY VALVES

Add accessory valves to your valve stack to:

- Control flow
- Reduce pressure in a valve circuit
- Lock pressure in a valve circuit
- Aluminum body rated to 3000 psi maximum

D03 ACCESSORY VALVES

Ductile body rated to 5000 psi maximum

Series LH

Series H

Series MH

MODEL NUMBER

ALUMINUM			
MCCV3-P-A	3000	Pressure Port Check Valve	
MCCV3-AB-A	3000	Dual Pilot Operated Check Valve	
MCFC3-AB-A	3000	Dual Flow Control Valve (A & B ports) Pressure Compensated with Reverse Check Valve	
MCFCP3-P-A	3000	Proportional Flow Control (solenoid operated, P port)	
MCRRV3-P4003-A	3000	Reducing/Relieving Valve on Pressure Port (400-3000 psi)	
DUCTILE			
MCCV3-P-D	5000	Pressure Port Check Valve	
MCCV3-AB-D	5000	Dual Pilot Operated Check Valve	
MCFC3-AB-D	5000	Dual Flow Control Valve (A & B ports) Pressure Compensated with Reverse Check Valve	
MCRRV3-P4003-D	5000	Reducing/Relieving Valve on Pressure Port (400-3000 psi)	

	D03 MOUNTING KITS AND MANIFOLDS
MODEL NUMBER	DESCRIPTION
MCSV3-BK100	Valve Mounting Kit, 1.00"
MCSV3-BK250	Valve Mounting Kit, 2.50"
MCSV3-BK300	Valve Mounting Kit, 3.00"
MCSV3-BK4125	Valve Mounting Kit, 4.125"
MCSV3-BK450	Valve Mounting Kit, 4.50"
MCSV3-BK575	Valve Mounting Kit, 5.75"
ALUMINUM MANIFOLD,	3000 PSI MAXIMUM
MCVM3-01A	D03 Parallel Valve Manifold, One Station, Aluminum, SAE ports (#10 P & T, #8 A & B), 3000 psi Max.
MCVM3-02A	D03 Parallel Valve Manifold, Two Station, Aluminum, SAE ports (#10 P & T, #8 A & B), 3000 psi Max.
MCVM3-03A	D03 Parallel Valve Manifold, Three Station, Aluminum, SAE ports (#10 P & T, #8 A & B), 3000 psi Max.
MCVM3-04A	D03 Parallel Valve Manifold, Four Station, Aluminum, SAE ports (#10 P & T, #8 A & B), 3000 psi Max.
MCVM3-05A	D03 Parallel Valve Manifold, Five Station, Aluminum, SAE ports (#10 P & T, #8 A & B), 3000 psi Max.
MCVM3-06A	D03 Parallel Valve Manifold, Six Station, Aluminum, SAE ports (#10 P & T, #8 A & B), 3000 psi Max.
MCVM3-COPA	D03 Cross-over Cover Plate, Aluminum (P to A, T to B)
MCVM3-CPA	D03 Parallel Maniold Cover Plate, Aluminum, 3000 psi Max.
DUCTILE MANIFOLD, 50	000 PSI MAXIMUM
MCVM3-01D	D03 Parallel Valve Manifold, One Station, Ductile, SAE ports (#10 P & T, #8 A & B), 5000 psi Max.
MCVM3-02D	D03 Parallel Valve Manifold, Two Station, Ductile, SAE ports (#10 P & T, #8 A & B), 5000 psi Max.
MCVM3-03D	D03 Parallel Valve Manifold, Three Station, Ductile, SAE ports (#10 P & T, #8 A & B), 5000 psi Max.
MCVM3-04D	D03 Parallel Valve Manifold, Four Station, Ductile, SAE ports (#10 P & T, #8 A & B), 5000 psi Max.
MCVM3-05D	D03 Parallel Valve Manifold, Five Station, Ductile, SAE ports (#10 P & T, #8 A & B), 5000 psi Max.
MCVM3-06D	D03 Parallel Valve Manifold, Six Station, Ductile, SAE ports (#10 P & T, #8 A & B), 5000 psi Max.
MCVM3-CPD	D03 Parallel Manifold Cover Plate, Ductile, 5000 psi Max.

milwaukee

169

milwaukee

D03 VALVE MOUNTING KITS

Select the proper valve mounting kit from the chart below. Combine the directional and sandwich valves to determine the required kit. Using these kits simplifies the installation of the valve stack components onto the manifold, whether pump or remote mounted.

▼ D03 VALVE MOUNTING KIT SELECTION CHART

		_				
RECOMMENDED MOUNTING KIT	MCCV3-P-A-P PORT CHECK	MCCV3-AB-D DUAL P.O. CHECK	MCFC3-AB-A DUAL FLOW CONTROL	MCFCP3-P-A PROPORTIONAL FLOW CONTROL	MCRRV3- P1530-A REDUCING/ RELIEVING VALVE	MCRRV3- P0415-A REDUCING/ RELIEVING VALVI
MCSV3-BK100*						
MCSV3-BK250	-					
MCSV3-BK250						
MCSV3-BK250						
MCSV3-BK317						
MCSV3-BK250						
MCSV3-BK250						
MCSV3-BK4125						
MCSV3-BK575						
MCSV3-BK575						
MCSV3-BK460						
MCSV3-BK4125						
MCSV3-BK575						
MCSV3-BK575						
MCSV3-BK460						
MCSV3-BK4125						
MCSV3-BK4125						
MCSV3-BK460						
MCSV3-BK460						

* Mounting kit included with D03 directional valve.

Series H

Series A

D05 Valves

D05 VALVES

For a complete Power Unit solution for higher flow systems, use *Milwaukee Cylinder* D05 spool valves and accessory valves. Choose the valve style required for each circuit and add the accessory valves required to control flow rate, circuit pressure or hold pressure in a circuit.

- Mounting Pattern: D05
- Solenoid Connection: DIN

		D05 VALVES		
MODEL NUMBER	MAXIMUM PRESSURE	FUNCTION	SCHEMATIC SYMBOL	ELECTRICAL REQUIREMENTS
MCSV5-43C-24	4600	4 Way, 3 Position, Closed Center		24 VDC
MCSV5-43C-120	4600	4 Way, 3 Position, Closed Center		120 VAC
MCSV5-430-24	4600	4 Way, 3 Position, Open Center		24 VDC
MCSV5-430-120	4600	4 Way, 3 Position, Open Center		120 VAC
MCSV5-43F-24	4600	4 Way, 3 Position, Float Center		24 VDC
MCSV5-43F-120	4600	4 Way, 3 Position, Float Center		120 VAC
MCSV5-43T-24	4600	4 Way, 3 Position, Tandem Center		24 VDC
MCSV5-43T-120	4600	4 Way, 3 Position, Tandem Center		120 VAC
MCSV5-42-24	4600	4 Way, 2 Position		24 VDC
MCSV5-42-120	4600	4 Way, 2 Position		120 VAC

milwaukee Glinder 171

milwaukee Ylinder

D05 ACCESSORY VALVES

Add accessory valves to your valve stack to:

- Control flow
- Reduce pressure in a valve circuit
- Lock pressure in a valve circuit
- Aluminum body rated to 3000 psi maximum
- Ductile body rated to 5000 psi maximum

D05 ACCESSORY VALVES

MODEL NUMBER	MOUNT	MAX PRESSURE	FUNCTION	SCHEMATIC SYMBOL
ALUMINUM				
MCCV5-P-A	D05	3000	Pressure Port Check Valve	
MCCV5-AB-A	D05	3000	Dual Pilot Operated Check Valve	
MCFC5-AB-A	D05	3000	Dual Flow Control Valve (A & B ports) Pressure Compensated with Reverse Check Valve	
MCFCP5-P-A	D05	3000	Proportional Flow Control (solenoid operated, P port)	
MCRRV5-P1753-A	D05	3000	Reducing/Relieving Valve on Pressure Port (175-3000 psi)	
DUCTILE				
MCCV5-P-D	D05	5000	Pressure Port Check Valve	
MCCV5-AB-D	D05	5000	Dual Pilot Operated Check Valve	
MCFC5-AB-D	D05	5000	Dual Flow Control Valve (A & B ports) Pressure Compensated with Reverse Check Valve	
MCRRV5-P1753-D	D05	5000	Reducing/Relieving Valve on Pressure Port (175-3000 psi)	

Series H

Series MN

D05 MOUNTING KITS & MANIFOLDS

When using accessory valves with your *Milwaukee Cylinder* D05 directional valves, use the proper mounting kits for each valve stack. For remote mounted valve applications at 3000 psi maximum pressure, choose an aluminum manifold with the number of valve stations required. For pressures up to 5000 psi maximum pressure, use the ductile iron manifolds.

	D05 MOUNTING KITS & MANIFOLDS
MODEL NUMBER	DESCRIPTION
MCSV5-BK175	Valve Mounting Kit, 1.75"
MCSV5-BK4.00	Valve Mounting Kit, 4.00"
MCSV5-BK6125	Valve Mounting Kit, 6.125"
MCSV5-BK825	Valve Mounting Kit, 8.25"
ALUMINUM MANIFOLD,	3000 psi maximum
MCVM5-01A	D05 Parallel Valve Manifold, One Station, Aluminum, SAE ports (#12 P & T, #8 A & B), 3000 psi Max.
MCVM5-02A	D05 Parallel Valve Manifold, Two Station, Aluminum, SAE ports (#12 P & T, #8 A & B), 3000 psi Max.
MCVM5-03A	D05 Parallel Valve Manifold, Three Station, Aluminum, SAE ports (#12 P & T, #8 A & B), 3000 psi Max.
MCVM5-04A	D05 Parallel Valve Manifold, Four Station, Aluminum, SAE ports (#12 P & T, #8 A & B), 3000 psi Max.
MCVM5-05A	D05 Parallel Valve Manifold, Five Station, Aluminum, SAE ports (#12 P & T, #8 A & B), 3000 psi Max.
MCVM5-06A	D05 Parallel Valve Manifold, Six Station, Aluminum, SAE ports (#12 P & T, #8 A & B), 3000 psi Max.
MCVM5-COPA	D05 Cross-over Cover Plate, Aluminum (P to A, T to B)
MCVM5-CPA	D05 Parallel Manifold Cover Plate, Aluminum, 3000 psi Max.
DUCTILE MANIFOLD, 50	100 PSI MAXIMUM
MCVM5-01D	D05 Parallel Valve Manifold, One Station, Ductile Iron, SAE ports (#12 P & T, #8 A & B), 5000 psi Max.
MCVM5-02D	D05 Parallel Valve Manifold, Two Station, Ductile Iron, SAE ports (#12 P & T, #8 A & B), 5000 psi Max.
MCVM5-03D	D05 Parallel Valve Manifold, Three Station, Ductile Iron, SAE ports (#12 P & T, #8 A & B), 5000 psi Max.
MCVM5-04D	D05 Parallel Valve Manifold, Four Station, Ductile Iron, SAE ports (#12 P & T, #8 A & B), 5000 psi Max.
MCVM5-05D	D05 Parallel Valve Manifold, Five Station, Ductile Iron, SAE ports (#12 P & T, #8 A & B), 5000 psi Max.
MCVM5-06D	D05 Parallel Valve Manifold, Six Station, Ductile Iron, SAE ports (#12 P & T, #8 A & B), 5000 psi Max.
MCVM5-CPD	D05 Parallel Manifold Cover Plate, Ductile, 5000 psi Max.

milwaukee 173

milwaukee

D05 VALVE MOUNTING KITS

Select the proper valve mounting stud kit from the chart below. Combine the directional and sandwich valves to determine the required kit. Using these kits simplifies the installation of the valve stack components onto the manifold, whether pump or remote mounted.

▼ D05 Valve Mounting Kit Selection Chart

		MCCV5-AB-D		MCFCP5-P-A	MCRRV5-P1530-A	MCRRV5-P0415-A
RECOMMENDED MOUNTING KIT	MCCV5-P-A-P PORT CHECK	MCCV5-AB-D DUAL P.O. CHECK	MCFC5-AB-A DUAL FLOW CONTROL	MCFCP5-P-A PROPORTIONAL FLOW CONTROL	NCKRV3-P1330-A REDUCING/RELIEVING VALVE	NCRRV5-P0415-A REDUCING/RELIEVING VALVE
MCSV5-BK175						
MCSV5-BK400						
MCSV5-BK400						
MCSV5-BK400						
MCSV5-BK400						
MCSV5-BK400						
MCSV5-BK400						
MCSV5-BK6125						
MCSV5-BK825						
MCSV5-BK825						
MCSV5-BK6125						
MCSV5-BK825						
MCSV5-BK825						
MCSV5-BK6125						
MCSV5-BK825						
MCSV5-BK825						
MCSV5-BK6125						
MCSV5-BK6125						
MCSV5-BK6125						
MCSV5-BK6125						

* Mounting kit included with D05 directional valve.

Series H

Valve & Manifold Matrix

V CONFIGURE YOUR VALVE*

Solenoid Voltage

				Body Material	voitage	
VALVE TYPE	SERIES	SIZE	FUNCTION	ADJUSTMENT RANGE	CENTER FUNCTION OR BODY MATERIAL	SOLENOID VOLTAGE
Directional Valve	MCSV = Solenoid Valve MCMV = Manual Valve MCAV = Air Pilot Operated	3 = D03 5 = D05	43 = 4 Way/3 Pos. 42 = 4 Way/2 Pos.	N/A	Center Function C = Closed O = Open F = Float T = Tandem	24 = 24 VDC Solenoid 120 = 120 VAC Solenoid 24D = 24 VDC Detented Solenoid 120D = 120 VAC Detented Solenoid SC = Spring to Center (Manual Valve or Air PO) DSC = Detented/Spring to Center (Manual Valve or Air PO)
CHECK VALVE	MCCV = Check Valve	3 = D03 5 = D05	P = P Port (inlet) AB = A & B Ports (dual P0)	N/A	Body Material A = Aluminum (3000 psi max) D = Ductile Iron (5000 psi max)	N/A
FLOW CONTROL VAL	 MCFC = Flow Control MCFCP = Flow Control Proportional 	3 = D03 5 = D05	P = P Port (inlet) AB = A & B Ports	N/A	 A = Aluminum D = Ductile Iron (not available with MCFCP) 	N/A 24 = 24 VDC Solenoid
Reducing / Relievi Valve	G MCRRV = Reducing / Relieving	3 = D03 5 = D05	P = P Port	4003 = 400-3000 psi 1753 = 175-3000 psi	 A = Aluminum (3000 psi max) D = Ductile Iron (5000 psi max) 	N/A

* For additional valve needs please contact the factory.

▼ CONFIGURE YOUR MANIFOLD (Remote Mount)

Manifold Series	3 Size	O1 - A	
SERIES	SIZE	FUNCTION	BODY MATERIAL
MCVM = Valve Manifold	3 - D03 5 - D05	 01 = Single Station 02 = Two Station 03 = Three Station 04 = Four Station 05 = Five Station 06 = Six Station 	A - Aluminum D - Ductile Iron

MILWAUKEE CYLINDER POWER UNIT WORKSHEET

(PLEASE REFER TO MATRIX PAGES AS AN EXAMPLE OF HOW THE UNIT IS BUILT)

COMPLETE THE FOLLOWING INFORMATION TO CHOOSE THE RIGHT UNIT

Date:	PROJECT TITLE:
REQUESTOR:	CUSTOMER DRAWING #:
DISTRIBUTOR:	User:
DISTRIBUTOR CONTACT:	User Contact:
Рноле #:	User Phone#:
Email:	User Email:

▼ CHOOSE YOUR POWER UNIT

BASIC POWER UNIT SPECIFICATIONS		
Reservoir Style:	Pressure:Load:	
Driver:	Fluid to be Used:	
Pump Type:	Space Dimensions:	
Motor hp:		
Motor Electrical: Volts: Phase: Hz:	OPTIONS OR SPECIAL FEATURES:	
Flow Rate (nominal) GPM:		
Reservoir Size (gal):		
Valve Manifold Type (if pump mount):		
Email: sales@milwaukeecylinder.com Fax: 414-769-0157		

▼ CHOOSE YOUR VALVE STACKS

Manifold Model # (if remote mount): Directional Valve: Module #1: Module #2: Module #3: Bolt Kit:	
Directional Valve:	
Module #1:	
Kan Module #2:	
Module #3:	
Bolt Kit:	
Directional Valve:	
Module #1:	
Module #2:	
Directional Valve: Module #1: Module #2: Module #3: Bolt Kit:	
Solt Kit:	
p Directional Valve:	
Module #1:	
Directional Valve: Module #1: Module #2: Module #3: Bolt Kit:	
Module #3:	
S Bolt Kit:	
Directional Valve:	
Module #1:	
Directional Valve: Module #1: Module #2: Module #3: Bolt Kit:	
Module #3:	
Solt Kit:	

Series H

Cyl Accessories

Design Engineering Guide

		Page				
General	Cylinder Basics	178				
Standard NFPA	Tie Rod Mount Flange Mount Side Mount and Lug Mounts	179				
Mounting	Pin Mount and Trunnion Mount Solid Flange Mount, Key Mount and Double Rod End Cylinder					
	Cylinder Loading & Sizing	180-181				
	Cylinder Force & Speed (Air and Hydraulic)	182-183				
	Fluids and Seals	184				
	Mounting Modifications / Accessories	185				
Additional	Rod Boot Data					
Information	Non-Rotating Cylinder Design	187				
	Custom Product Examples	188-189				
	Power Units: Gear and Vane Info	190				
	Valves: D03 and D05 Info	191				
	Fluid Power Formulas	192				
	Glossary of Fluid Power Terms	193				

milwaukee

BASIC CYLINDER OPERATING PRINCIPLES

Cylinders are used to convert fluid power into mechanical motion. A cylinder consists of a cylindrical body, closures at each end, movable piston, and a rod attached to the piston.

When fluid pressure acts on the piston, the pressure is transmitted to the piston rod, resulting in linear motion. The piston rod thrust force developed by the fluid pressure acting on the piston is easily determined by multiplying the line pressure by the piston area.

FORCE = PRESSURE x AREA or F = PA

EXAMPLE: Find the thrust force of a 4" diameter piston operating with a line pressure of 100 psi.

The piston area has to be determined first to solve this problem. The area of a circular surface is πr^2 , where "r" is the radius. In the case of a 4" diameter piston, the area equals 12.57 square inches (πr^2). Since a pressure of 100 psi acts on each square inch, the total thrust force will be 100 x 12.57 or 1257 lbs.

When calculating the pull force of a cylinder, the area covered by the piston rod must be subtracted from the total area of the piston. The pressure does not act on the area covered by the piston rod.

Tables are provided on pages 182-183 (as well as within each Series' Section) to save mathematical calculations for determining thrust force, pull force, and cylinder speed. See page 31, Series H; page 67, Series LH; and page 97, Series A and Series MN.

TYPES OF CYLINDERS

Standard cylinders have been designed to meet the wide range of applications. The following types of cylinders provide an overview of what is available.

■ SINGLE-ACTING CYLINDER

The single-acting cylinder is pressurized at one end only, with the opposite end vented to atmosphere through a breather filter (air cylinder) or vented to a reservoir (hydraulic cylinder). The return stroke of the cylinder is accomplished by some external means.

SPRING RETURN CYLINDER

The spring return cylinder is normally considered a single acting cylinder. The operation of this type of cylinder is the same as a single acting cylinder, except that a spring is used to accomplish the return stroke.

DOUBLE-ACTING CYLINDER

The most familiar double acting cylinder is the single rod end. This type of cylinder provides power in both directions, with a pressure port at either end. Single rod end cylinders exert greater forces when extending than when retracting, since the piston area on the blind end is larger than the piston area on the rod end (due to the area covered by the piston rod).

DOUBLE ROD END CYLINDER

The double rod end cylinder is used when it is necessary for the cylinder to exert equal force and operate at equal speed in both directions. It also can be used to operate limit valves or switches.

POSITIONAL OR DUPLEX CYLINDER

	╧╹╎┎╹╘		

Duplex cylinders are similar to tandem cylinders in that both are cylinders connected in line, but the pistons of a duplex cylinder are not physically connected; the rod of one cylinder protrudes into the non-rod end of the second, and so forth. A duplex cylinder may be more than two in-line cylinders and the stroke lengths of the individual cylinders may vary. This results in a component that can achieve a number of different fixed stroke lengths depending on which of the cylinders are pressurized.

TANDEM CYLINDER

A tandem cylinder consists of two cylinders mounted in line with the pistons, connected by a common piston rod. The main advantage of this cylinder is the multiplication of force, during the entire stroke, without requiring higher operating pressures or larger bores.

Series MH

VAV

Manipulators

Standard NFPA Mountings

DESIGN INFORMATION

TIE ROD MOUNT

When using tie rods extended on the rod end, the best application is a tension load. For a thrust load application, the tie rods should be extended on the blind end of the cylinder. Tie rod mounts are suited for many applications, but it should be noted that they are not as rigid as flange mounted cylinders and often require additional support for long stroke applications.

SIDE AND LUG MOUNTS

The side or lug mounted cylinder provides a fairly rigid mount. This type of mount can tolerate a slight amount of misalignment when the cylinder is fully extended, but as the piston moves toward the blind end, the tolerance for misalignment decreases. It is important to note that if the cylinder is used properly (without misalignment), the mounting bolts are either in simple shear or tension without compound stresses.

SOLID FLANGE MOUNT

The solid flange mount is the strongest, most rigid method of mounting a cylinder. Industry standards for this type of mounting only cover $1\frac{1}{2}$ " through 8" bore cylinders. *Milwaukee Cylinder*, however, offers this mount on cylinders up to 12" bore.

FLANGE MOUNT

The flange mount is one of the strongest, most rigid methods of mounting. With this type of mount, there is little allowance for misalignment. When long strokes are required, the free end opposite the mounting should be supported to prevent sagging and possible binding of the cylinder. When the cylinder is used in a thrust load application, a blind end flange should be used. For tension applications, rod end flange mounts should be used.

PIN AND TRUNNION MOUNT

All pin and trunnion mounted cylinders need a provision on both ends for pivoting. This type of mounting is designed to carry shear loads and requires that the trunnion or pivot pins are rigidly held by closely fit bearings for the entire pin length.

KEY MOUNT

The key mount retainer plate is a mounting

option designed to add stability to foot and side mounted cylinders. The retainer

plate is extended below the mounting surface of the cylinder. This extension may be fit into a milled keyway, eliminating the need for welded keys or locator pins.

DOUBLE ROD END CYLINDERS

Double rod end cylinders are available in every mounting style except the clevis

mount (61) and fixed eye mount (62). It should be noted by the designer that when a double flange mount is required, there will be tie rod nuts protruding on one end. **MOVING LOAD**

SLIDING LOAD

Cylinders perform a wide variety of applications and are often used in place of larger, more expensive mechanical systems. One such application is when a cylinder is used to move a high friction sliding load. Some examples of this are: machine slides, pallet shuttle systems on automated machinery, milling machine tables, and grinder tables.

There are a number of things to consider when sizing a cylinder for a sliding load application. These include the unit weight (load), lubrication, and required speed. For applications where there is light lubrication, the cylinder should provide a thrust force capable of moving a load equal to 50% to 75% of the actual load. Once in motion, a thrust force capable of moving 20% of the actual load weight is adequate.

Because air is a compressible medium, air cylinders should not be used for slow or controlled feed or motion in a sliding load application. The designer should be aware that a jerky motion will result if an air cylinder is used to perform this type of work. Because oil is non-compressible, a hydraulic cylinder with a metered out speed control would be more effective. For indexing applications, from one positive stop to another, air cylinders usually provide better response and more rapid action than hydraulic cylinders.

ROLLING LOAD

Cylinders can be used to move rolling loads or loads which are moved on low friction bearings. For this type of application, the cylinder should have a thrust force capable of moving a load equal to 10% of the actual load. When using a cylinder to move a rolling load, some means of deceleration at the end of the cylinder stroke should be used to prevent the momentum of the load from damaging either the cylinder or the machine.

CYLINDERS FOR LIFTING

VERTICAL LIFTING

Air cylinders must be sized to have more force than needed to just balance the load it must move. The more the cylinder is oversized, with respect to the load, the faster it can move the load (this is not true of hydraulic cylinders).

In the figure at the right, the cylinder has enough upward force to just balance the weight of the load. It cannot move the load upward, it can only hold it from dropping. To start the load in motion, it will have to have additional force. This can be provided by increasing the air pressure to more than 80 psi or by use of a larger bore cylinder.

The exact speed of an air cylinder cannot be calculated. Air cylinder sizing depends on the degree of overpowering to move the load, valving, piping, and other factors which usually are unknown and cannot be measured. For further information on air cylinder sizing and speed, refer to page 100.

An air cylinder should not be used for a platform or hoist lift application. If the lift is stopped in mid stroke, it will have a tendency to drift due to the compressibility of air. A hydraulic system or air over oil system should be used in these types of applications, since force applied to a confined liquid exhibits about the same effect of rigidity as a solid.

ROD SIZE

Correct rod size selection is an important factor in sizing a cylinder for an application. If the piston rod diameter is too small in relation to the load column, failure or rod buckling is likely to occur.

The standard rod for each bore size that *Milwaukee Cylinder* manufactures is sufficient to carry the maximum tension force that the cylinder is capable of producing. It is in compression applications that the column strength needs to be considered. For proper rod size selection in compression applications, refer to Table 1 on page 31, Series H; page 67, Series LH; and page 97, Series A and Series MN.

ROD BEARING FAILURE

Side load is the most common cause of rod bearing failure. *Milwaukee Cylinder* has designed its standard line of cylinders to operate with a minimum amount of side load. When mounting a cylinder, it is critical that the alignment is checked both in the extended and the retracted positions. When the rod is fully extended, extensive leverage can be developed. If a side load condition exists, it will cause the piston to score the barrel and rapidly reduce the effective life of the rod bushing.

The designer has three methods which can be used to either eliminate or reduce the effects of side load. The first is to use a pin or trunnion mounted cylinder so as to move with the side load. The second is to guide the load and the piston rod, which will eliminate the side load condition. The third solution is to use a cylinder with more stroke than necessary to perform the function. This will increase the distance between the two bearing areas of the cylinder (the piston and rod bushing), reducing the overall effect of the side load condition.

STOP TUBE

The use of a stop tube is the preferred method for reducing piston and bearing loads on long stroke cylinders. It is also used to prevent jack-knifing or buckling of horizontally mounted cylinders used in long stroke compression applications.

For reducing bearing loads on the rod, a stop tube is more effective, less costly, and lighter weight than an oversized piston rod. A stop tube is placed between the piston and rod

end cap to restrict the extension of the rod. This space between the two bearing areas provides additional strength and support for the extended rod.

At *Milwaukee Cylinder*, we offer two stop tube designs. The single piston stop tube design is common to all cylinders except cushion rod end air cylinders. A stop tube will increase the overall length of the cylinder and will alter the mounting dimensions on most models by the length of the stop tube.

The second stop tube design is

the double piston stop tube. This stop tube is primarily used for cushion rod end air cylinders. Unlike the single piston stop tube design, the double piston stop tube provides additional strength for excessive side loading and adds additional bearing area to the cylinder.

To determine if a stop tube is necessary for a cylinder application, the value of "K" has to be determined (refer to Figure 1). If the required cylinder has a "K" value in excess of 40," a stop tube is required. For each 10" increment or fraction thereof in excess of 40", one inch of stop tube is recommended.

www.milwaukeecylinder.com

181

■ AIR CYLINDER FORCE

Series H

Series MH

Series LH

Series A

Series MN

Hyd-Pneu Devices

An air cylinder must be oversized to move a load. As illustrated, a 4" bore air cylinder will balance a 1000 pound load with 80 psi of air pressure. To move this load at a slow rate of speed, the cylinder must be oversized.

The designer should remember that when calculating cylinder force on the return (pull) stroke, the rod area must be deducted from the piston area. When a double rod end cylinder is used, deduct for both directions of stroke when calculating the thrust force.

AIR CYLINDER SPEED

The exact speed of an air cylinder cannot be calculated.

Air cylinder sizing depends on the degree of overpowering required to move the load at the desired speed, valving, piping, and other factors which usually are unknown and cannot be measured.

When a fast speed is required, the bore size and line pressure should be twice that which is needed to balance the load resistance. The lines to the valve and cylinder should be as short as possible. When selecting the directional valve to be used in an air application, the orifice of the valve should be equal to the cylinder port size. The air cylinder speed chart shows the proper port size under average conditions.

Note: This Air Cylinder Speed Chart is based on average conditions. Conditions where the cylinder is operating at twice the thrust force required and a line pressure of 80 to 100 psi.

▼ AIR CYLINDER SPEED CHART

		ACT	UAL VA	LVE OR	IFICE S	IZE		
BORE DIA	1⁄32	1⁄16	1⁄/8	1⁄4	3⁄8	1⁄2	3⁄4	1
11/8	5	12	28	85	-	-	-	-
11/2	3	7	16	50	125	-	-	-
2	1	4	9	28	70	112	-	-
21⁄2	-	2	6	18	45	72	155	-
31⁄4	-	-	3	9	22	36	78	165
4	-	-	2	7	17	28	60	130
5	-	-	1	4	11	18	40	82
6	-	-	-	3	7	12	26	55
8	-	-	-	1	4	7	15	32
4	-	-	-	-	2	4	9	20
12	-	_	_	_	1	3	6	14

Above figures are in inches per second.

HYDRAULIC CYLINDER FORCE

Table 3 on page 31 or 67 shows the thrust force developed by various bore diameters when working at various pressures. These figures do not include a factor covering a reduction in force due to seal or packing friction in the cylinder. This type of friction is estimated to affect the cylinder thrust force by 10%. Additional pressure must be developed by the pump, not only to overcome frictional loss, but also flow losses in the circuitry. The engineer should realize that the usable pressure in the cylinder may be from 10% to 25% less than the pump and relief valve gauge reading.

This type of friction is estimated to affect the cylinder thrust force by 10%. Additional pressure must be developed by the pump, not only to overcome frictional loss, but also flow losses in the circuitry. The engineer should realize that the usable pressure in the cylinder may be from 10% to 25% less than the pump and relief valve gauge reading.

■ HYDRAULIC CYLINDER SPEED

Figures shown in the body of this chart are cylinder rod travel speeds in inches per minute. The extension speeds represent the net piston area for the various rod diameters shown.

				HYD	RAULIC CY	LINDER SI	PEEDS (inc	nes per min	ute)				
PISTON DIA	ROD DIA	1 GPM	3 GPM	5 GPM	8 GPM	12 GPM	15 GPM	20 GPM	25 GPM	30 GPM	40 GPM	50 GPM	75 GPM
	none	130	392	654	1034	-	-	-	-	-	-	-	-
1 ½	5⁄8	158	476	792	1265	_	_	_	_	_	_	_	_
1/2	1	235	706	1176	1880	-	-	-	-	-	-	-	-
	none	73	221	368	588	883	1120	-	-	-	-	-	-
2	1	97	294	490	782	1175	1465	-	-	-	-	-	-
	13⁄8	139	418	697	1115	1673	2090	-	-	-	-	-	-
	none	47	131	235	376	565	675	940	1175	-	-	-	-
2 ½	1	56	168	280	448	672	840	1120	1400	-	-	-	-
-/2	13⁄8	67	203	339	542	813	1015	1355	1695	-	-	-	-
	13⁄4	92	277	463	740	1110	1385	1850	2310	-	-	-	_
	none	28	83	139	223	334	417	557	696	836	1115	-	-
3 ½	13⁄8	34	102	170	271	407	510	680	850	1020	1360	-	-
374	13⁄4	39	118	196	313	472	588	784	980	1176	1568	-	-
	2	44	134	224	358	537	672	896	1120	1344	1792	-	-
	none	18	55	92	147	220	276	368	460	552	736	920	-
	13⁄4	22	68	113	182	273	339	452	565	678	904	1130	-
4	2	24	73	122	196	294	366	488	610	732	976	1220	-
	21/2	30	90	150	241	362	450	600	750	900	1200	1500	-
	none	12	35	58	94	141	174	232	290	348	464	580	870
	2	14	42	70	112	168	210	280	350	420	560	700	1050
5	21/2	16	47	78	125	188	235	315	390	470	630	780	1170
	3	18	55	92	147	220	275	365	460	550	730	920	1380
	31⁄2	22	66	111	178	266	333	444	555	665	888	1110	1665
	none	8	24	41	65	98	123	162	202	245	320	405	606
	21⁄2	10	30	50	79	118	150	200	250	300	400	495	750
6	3	11	33	54	87	130	165	206	270	325	435	545	810
	31⁄2	12	37	62	99	148	185	245	310	370	495	615	830
	4	15	44	73	117	176	220	295	365	440	585	735	1095
	none	6	18	30	48	72	90	120	150	180	240	300	450
	3	7	22	37	59	88	110	145	185	220	295	365	555
7	31⁄2	8	24	40	64	96	120	160	200	240	320	400	600
	4	9	27	45	71	107	135	180	225	270	360	445	675
	41⁄2	10	31	51	82	122	153	205	255	305	410	515	765
	5	12	37	61	98	147	185	245	305	370	490	615	915
	none	4	14	23	36	55	69	92	115	135	185	230	345
	31/2	51/2	17	28	45	68	85	115	140	170	230	285	420
8	4	6	18	30	49	73	90	122	150	180	240	305	450
	41⁄2	6½	20	33	53	80	100	135	165	200	265	335	495
	5	71/2	22	38	60	90	114	150	185	225	300	375	555
	51/2	81⁄2	26	43	70	104	129	172	215	255	345	430	645
	none	3	9	15	23	35	44	60 75	73	88	115	145	220
10	41⁄2	31/2	11	18	29	44	55	75	92	111	150	185	275
10	5	4	12	20	31	47	60	80	100	120	155	195	300
	5½	41/2	13	21	34	50	63	84	105	132	165	210	315
	7	5½	17	29	46	69	87	115	145	174	230	285	435

183

Fluids and Seals

FLUIDS

Hydraulic fluid heats, cools, lubricates, and sometimes corrodes mechanical components, picks up and releases gases, and sweeps sludge into supposedly free clearances. The fluid is just as important as any other part of the hydraulic system. In fact, a major portion of hydraulic problems stem from the use of improper types of fluids or fluids containing dirt and other contaminants.

To understand the fluids used in today's industry, you have to divide them into two general areas: petroleum fluids and fire resistant fluids. These in turn break down into a number of different types with different properties. Not all fluids are compatible with the standard seal combinations offered by cylinder manufacturers.

In the chart below is a small sample of the fluids available and the seals with which they are compatible. Specific information on seal compatibility is available from either the fluid supplier or the component manufacturer.

SEALS

BUNA N SEAL This type of seal is excellent with petroleum products. The seal is rated for a temperature range from -20°F to +200°F, but when used for low temperatures, it is necessary to sacrifice some low temperature resistance. It is a superior material for compression set, cold flow, tear and abrasion resistance. This seal is generally recommended for petroleum, water, diester and water-glycol.

POLYURETHANE SEAL The polyurethane seal provides excellent mechanical and physical properties. Polyurethane does not provide a good low pressure seal, due to its poor compression and permanent set properties. This seal is generally recommended for petroleum, water/oil, and phosphate ester.

ETHYLENE PROPYLENE This seal is excellent when used with Skydrol 500 and Phosphate Ester Fluids. The seal is rated for a temperature range from -65° F to $+350^{\circ}$ F. This seal is generally recommended for phosphate ester, steam (to 400° F), water, and ketones.

VITON SEAL Viton seals are compatible with a wide range of fluids. This seal is rated for a temperature range from -15° F to +350°F. This seal is generally recommended for petroleum, silicate ester, diester, halogenated hydrocarbons, and most phosphate esters.

FLUID NAME	MILITARY SPECIFICATION	TRADE NAME/NUMBER	BUNA-N	POLYURETHANE	EP	VITON FLUROCARBON
		Houghto-Safe 600 Series	Recommended	Unsatisfactory	Recommended	Satisfactory
		Houghto-Safe 500 Series	Recommended	Unsatisfactory	Recommended	Insufficient data
Water Glycol	MIL-H22072	Houghto-Safe 271 Series	Recommended	Unsatisfactory	Recommended	Satisfactory
		Ucon Hydrolube	Recommended	Unsatisfactory	Recommended	Recommended
		Celluguard	Recommended	Unsatisfactory	Recommended	Recommended
Water Oil/Emulsion		Houghto-Safe 5040 Series	Recommended	Unsatisfactory	Unsatisfactory	Recommended
		Gulf FR	Recommended	Recommended	Unsatisfactory	Recommended
Water Soluble Oil			Recommended	Insufficient data	Recommended	Insufficient data
Water, Fresh			Recommended	Unsatisfactory	Recommended	Satisfactory
Water, Salt			Recommended	Unsatisfactory	Recommended	Satisfactory
		Houghto-Safe 1000 Series	Unsatisfactory	Insufficient data	Recommended	Recommended
Disculate Fatas	MIL-19547B	Houghto-Safe 1120 Series	Unsatisfactory	Unsatisfactory	Recommended	Recommended
Phosphate Ester		Pyrogard 42, 43, 53, 55	Unsatisfactory	Unsatisfactory	Recommended	Recommended
		Skydrol 500 Type 2	Unsatisfactory	Unsatisfactory	Recommended	Unsatisfactory
		Skydrol 7000 Type 2	Unsatisfactory	Unsatisfactory	Recommended	Unsatisfactory
Diester	MIL-H-7808	Lube Oil Aircraft	Satisfactory	Unsatisfactory	Unsatisfactory	Satisfactory
Silicate Ester	MIL-H-8446B	Brayco 846	Satisfactory	Recommended	Unsatisfactory	Recommended
Kerosene			Recommended	Recommended	Unsatisfactory	Recommended
Jet Fuel	MIL-J-5624	JP-3, 4, 5 (RP-1)	Recommended	Satisfactory	Unsatisfactory	Recommended
Diesel Fuel			Recommended	Marginal	Unsatisfactory	Recommended
Gasoline			Recommended	Satisfactory	Unsatisfactory	Recommended
Deleter Dere	MIL-H-6383	Preservative Oil	Recommended	Recommended	Unsatisfactory	Recommended
Petroleum Base	MIL-H-5606	Aircraft Hyd. Fluid	Recommended	Satisfactory	Unsatisfactory	Recommended

Power Units/Valves

MOUNTING MODIFICATIONS

SPECIAL CYLINDER MOUNTINGS

The standard NFPA (National Fuid Power Association) mountings satisfy a wide range of mounting applications and can be easily modified to suit specific design requirements. As a machine or equipment designer, you may encounter various situations where a standard or a modified standard mounting will not satisfy your design requirements. *Milwaukee Cylinder* specializes in meeting your needs in this area by providing cylinders custom designed to suit your specific applications.

For information on what data is required by *Milwaukee Cylinder* to develop a design to suit your specific requirements, contact either your local *Milwaukee Cylinder* Distributor or the factory.

COMBINED MOUNTINGS

Milwaukee Cylinder offers the designer the ability to combine standard mountings to meet special design requirements. Some examples of this are:

An MF1 mount constructed with an MS2 mount blind end cap. An MP1 mount constructed with an MS4 mount rod end cap.

These and other combinations can be readily made from standard parts. If you are unsure of a possible combination or its suitability to your application, consult your local *Milwaukee Cylinder* Distributor or the factory.

SOLID STATE END OF STROKE LIMIT SWITCHES

Design compatible with major brands.

FEATURES:

- End of stroke indication for all sizes of cylinders
- Pneumatic or hydraulic operation (3000 psi)
- · Choice of rod end, cap end or both ends
- · Cushioned or non-cushioned cylinders available
- Switches are permanently set at factory no adjustments necessary
- No special filtration required any cylinder operating fluid acceptable
- Operating point repeatable to.002"
- Quick Response
- Operating temperature range of -4°F to +158°F
- Sensing range .08"
- · Short circuit protected
- · Immunity to weld field noise
- Typical switching range: 20 to 250 volts AC/DC

OPTIONS:

- Low profile, 1%" high above surface (for certain cylinder sizes)
- Mini or micro connections
- Reduced switching voltage available to 10 vdc
- Supplied with or without switches

TRANSDUCERS

FEATURES:

- · High immunity to shock and vibration
- · Non-contacting design, no wear
- 3000 psi operating pressure
- 24 VDC operating voltage
- Analog or digital output
- Strokes up to 200 inches

Other styles and configurations of cylinders modified for embedded or external transducers are available. Contact your local *Milwaukee Cylinder* Distributor or the factory.

www.milwaukeecylinder.com

Standard Material: Neoprene Nylon

Series MH

Series H

Series MN

Special Material:

Consult Factory

ROD BOOTS

When cylinders are used in areas of high contamination or where contaminants have an air hardening property, the exposed piston rod should be covered with a rod boot to protect the rod bearing and seals. A rod boot is simply a collapsible cover. It is of sewn construction made from a neoprene coated fabric. The rod boots are impervious to oil, grease and water. They will operate effectively from 0°F to +200°F without cracking.

ROD BOOT DATA CHART							
ROD DIA. (in)	COVER I.D	COVER O.D	ROD BOOT STYLE	MINIMUM LENGTH FACTOR			
5⁄8	3⁄4	3	RA-15	.07			
1	11⁄8	33⁄8	RB-15	.07			
1 ¾	1½	33⁄4	RC-15	.07			
1 ¾	17⁄8	41⁄8	RD-15	.07			
2	23⁄8	45⁄8	RE-15	.07			
2 ½	27⁄8	51⁄8	RF-15	.07			
3	33⁄8	7	Consult	Factory			
31⁄2	37⁄8	71⁄2	Consult	Factory			
4	41⁄2	81⁄4	Consult Factory				
41⁄2	5	83⁄8	Consult	Factory			
5	51⁄4	9	Consult	Factory			
51⁄2	53⁄4	91⁄2	Consult	Factory			

SPLINE SHAFT

FEATURES:

- All cylinder series
- Cushioned or non-cushioned cylinders
- All bore and rod combinations except 5%" diameter rod
- Spline shaft and mating sleeve prevent natural rotation of piston rod during stroke
- Mounting styles 11, 21, 31, 35, 41, 42, 43, 71, 72, 73, 74. Consult factory for other mounting styles
- Engineering dimensional drawing provided with each cylinder ordered
- NOTE: Not available in double rod end cylinders or with stroke lengths over 45 inches. Rotational limits or torsional load information must be supplied to factory.

GUIDE ROD

FEATURES:

- All cylinder series
- Cushioned or non-cushioned cylinders
- All mounting styles
- Double rod end cylinders
- All bore and rod combinations 8-inch bore and larger
- Guide rod design through piston prevents natural rotation of piston rod
- Engineering dimensional drawing provided with each cylinder ordered
- NOTE: Rotational limits or torsional load information must be supplied to factory.

BORE DIA.	ROD DIA.	AVAILABILITY
	5⁄8	N/A
11/2	1	N/A
	5⁄8	N/A
2	1	N/A
	13⁄8	N/A
	5⁄8	Yes
21⁄2	1	N/A
2 72	13⁄8	N/A
	1¾	N/A
	1	Yes
01/	13⁄8	N/A
31/2	13⁄4	N/A
	2	N/A
	1	Yes
	13⁄8	Yes
4	13⁄4	Yes
	2	N/A
	21⁄2	N/A
	1	Yes
	13⁄8	Yes
	1¾	Yes
5	2	Yes
	21⁄2	Yes
	3	N/A
	31⁄2	N/A
	13⁄8	Yes
	13⁄4	Yes
	2	Yes
6	21/2	Yes
	3	Yes
	31⁄2	Yes
	4	N/A
	3	Yes
	31/2	Yes
7	4	Yes
	41⁄2	Yes
	5	N/A

Contact Milwaukee Cylinder for all your Custom Cylinder needs.

Milwaukee Cylinder has two basic identities as a cylinder producer. The first is a supplier of standard Hydraulic and Air Cylinders. The second is as a specialist in the design and manufacture of totally unique cylinders. For information on what data is required to develop a design to suit your needs, contact either your local *Milwaukee Cylinder* representative, or the factory.

milwaukee

ADJUSTABLE STROKE CYLINDER

In this application, the extend cycle of the cylinder had to be adjustable for different lengths. *Milwaukee Cylinder* attached a special, welded stop around one of the double rod ends. The rod end going through the stop has an easily adjustable nut that will precisely set the length of the extend cycle.

ADJUSTABLE STOP CYLINDER

Like the cylinder above, this one does not require special valving to achieve an adjustable stroke length. But unlike the other cylinder, the length of the stroke had to be adjustable in both directions. In this case, the blind end flange had an extension added through which one of the double rod ends passed. Around the rod were attached two, threaded, locking collars for quick and easy adjustment of the rod travel in either direction.

NOSE MOUNTED CYLINDER

Quite often, cylinders designed and manufactured overseas do not conform to NFPA specifications. *Milwaukee Cylinder* is able to design a replacement non-NFPA cylinder. This particular cylinder was designed to replace a cylinder built in Europe. A special threaded nozzle was required for mounting purposes.

Manipulators

Power Units/Valves

Design Guide

Æ

Whether you require a different material, seals, mounting, other modification or a completely unique custom product, **Milwaukee Cylinder** has the resources to meet your needs. We also offer **mechanical locking, position sensing, nonrotating** and other specialty cylinder types.

HEAVY-DUTY CYLINDER

The Series HD cylinder is a heavy-duty, non-tie rod design rated for continuous 5,000-psi operation. It has been designed specifically for punching and piercing operations in thick metal requiring tonnage ratings from 17-1/2 to 100 tons.

CONTROLLED ROTATING CYLINDER

Sand shell cores for casting turbine rotors required a large cam roll and three men to turn the cope. Due to the curved blades on the rotor, the cope of the pattern had to be rotated as it was being removed. *Milwaukee Cylinder* engineered a precision cylinder in which the rod would rotate during the first two inches of upward travel and then travel straight up for eleven more inches. This controlled rotation released the blades in the pattern from the sand core without incurring breakage.

TILT SYSTEM CYLINDER

Milwaukee Cylinder was chosen to design and manufacture a custom hydraulic cylinder functioning as the tilting mechanism. We developed a cylinder that could extend and retract a precise distance, allowing a specific degree of tilt in either direction.

Hydraulic Power Units from Milwaukee Cylinder are available in Gear Pump and Vane Pump designs.

HOW A VANE PUMP WORKS

The MCVEV series uses a vane style pump element that has both volume adjustment and maximum pressure adjustment. The output flow and pressure are determined by the position of the cam ring and the vane rotor.

- A. To adjust the volume output, the position of the cam ring is moved to reduce the clearance between the vane rotor and the cam ring.
- B. To adjust the maximum output pressure, the spring adjustment is set so the internal pressure in the cam ring centers the cam ring around the rotor.

Calculating System Requirements

- Cylinder Area (in)* = πr^2
- Cylinder Volume = (in³) = Cylinder Area x Stroke
- Flow Requirement (gpm) = <u>Cylinder Volume x # of Cylinders x (60÷Speed Required^{**})</u> 231 in³ per gal
- * Alternate formula: (Bore Diameter)² x 0.7854
 ** In seconds

HOW A GEAR PUMP WORKS

The MCVEG series uses a gear style pump element. The driven gear is coupled to the motor. The idler gear is driven by the rotation of the driven gear. Oil is pulled into the suction port, carried in the gap between the gear teeth, and comes out of the pressure port. Adjustment of the system pressure requires a relief valve in the circuit.

	<i>Example:</i> Cylinder Bore: 4.00 Number of Cylinder			ength: 12" equired = 6 sec.	
ired <u>**)</u>					
	Cylinder Radius (r)	= 4" bore	diameter	÷2=2" radius	
	Cylinder Area	= π x 2" x	2" = 3.14	$x 4 in^2 = 12.56 in^2$	
	Cylinder Volume	= 12.56 in	² x 12" = ⁻	150.72 in ³	
	Flow Requirement		n ³ x 4 x (6 31 in ³ per	/	
				6028.8 in ³ 231 in ³ per gal	
		= 26 gpm			

Calculating Reservoir Size

The oil capacity of the reservoir used in a hydraulic power unit (HPU) provides the oil volume required to operate the cylinders and other devices in a system, and also absorbs and radiates the heat produced during the operation of the HPU. Using a small reservoir may result in an overheated system. The guideline for sizing the reservoir is 3 to 4 times the flow rate of the pump (gpm). For example, a 5 gpm HPU should use a 15-20 gallon reservoir. Further reduction of heat buildup in the reservoir may require the use of a heat exchanger. A low oil level and high temperature switch in the reservoir can be used to shut the system down if the oil level in the reservoir falls below a usable level or if the oil temperature rises to a unsafe temperature.

D03 AND D05 DIRECTIONAL VALVES

Spool type valves are typically used with a hydraulic power unit (HPU) where the system provides continuous flow. This helps to compensate for losses due to internal leakage in the valves. *Milwaukee Cylinder* offers spool valves in two industry standard sizes:

D03: Flow rates of 12-17 gpm

D05: Flow rates of 25 gpm

The operation of a valve is described by the flow paths to the circuit ("way"), the number of valve operating positions ("position") and the type of flow path in the center position ("center"). Other characteristics used in describing a valve describe the type of operator used: solenoid, manual lever, cam, air, and operator options such as spring centered and detented.

Common valve configurations are:

4 way/3 position/TANDEM Center

CENTER POSITION: Pessure to Tank USES: Idles pump in the center position

4 way/3 position/OPEN Center

CENTER POSITION: All ports to Tank USES: Idles pump in the center position commonly used with pilot operated check valve

4 way/3 position/CLOSED Center

CENTER POSITION: All ports blocked USES: Used in system with multiple valves

4 way/3 position/FLOAT Center

CENTER POSITION: A & B to to Tank, P blocked USES: Used in system with mulitple valves with pilot operated check valves

4 way/2 position

NO CENTER POSITION USES: Used in systems where cylinders are always either advanced or retracted

ACCESSORY VALVES

In many circuits, accessory valves are used with the directional valve to provide additional control of the flow in the system:

Holding:

Check valve on the pressure port

Dual pilot operated check valves on "A" and "B"

Control of flow rate:

Control of pressure (on pressure port)

Manifolds

Manifolds are available for D03 and D05 size valves as either pump mounted or remote mounted. They are available in single and multiple valve models. For systems operating up to 3000 psi, choose an aluminum manifold. The pump mounted manifolds used on the *Milwaukee Cylinder* power units are aluminum, as these units operate at 3000 psi or below.

For applications using higher pressure power units, up to 5000 psi, select the remote mount ductile iron manifolds.

Porting: D03: P and T: #10 SAE A and B: #8 SAE

D05: P and T: #12 SAE A and B: #8 SAE

Fluid Power Formulas

FORMULA		WORD FORMULA	LETTER FORMULA
FLUID PRESSURE (pounds per square inch)	PRESSURE	= <u>force (pounds)</u> unit area (square inches)	$P = \frac{F}{A} or psi = \frac{F}{A}$
CYLINDER AREA	AREA	= $\pi \times \text{radius}^2$ (inches)	$A = \pi r^2$
(square inches)		= $\pi/4$ x diameter ² (inches)	$A = \frac{\pi D^2}{4} or A = .785d^2$
CYLINDER FORCE (pounds, push or pull)	FORCE	= pressure (psi) x net area (square inches)	F = psi x A or F = PA
CYLINDER VELOCITY or SPEED (feet per second)	VELOCITY	= 231 x flow rate (GPM) 12 x 60 x net area (square inches)	$v = \frac{231Q}{720A}$ or $v = \frac{.3208Q}{A}$
CYLINDER VOLUME	VOLUME	$= \frac{\pi x \text{ radius}^2 (\text{inches}) \text{ x stroke (inches)}}{231}$	$V = \frac{\pi r^2 L}{231}$
CAPACITY (gallons of fluid)		= <u>net area (inches) x stroke (inches)</u> 231	$v = \frac{AL}{231}$ L = length of stroke
CYLINDER FLOW RATE (GPM)	FLOW RATE	= <u>12 x 60 x velocity (feet/second) x net area (square inches)</u> 231	$Q = \frac{720vA}{231}$ or $Q = 3.117va$
	TORQUE	= $\frac{\text{pressure } (psi) \text{ x f.m. displacement } (cu. in./rev.)}{2\pi}$	$T = \frac{psi d}{2\pi}$ or $T = \frac{Pd}{2\pi}$
FLUID MOTOR TORQUE (inch pounds)		= <u>horsepower x 63025</u> rpm	T = <u>63025 HP</u> n
		= <u>flow rate (gpm) x pressure (psi) x 36.77</u> rpm	$T = \frac{36.77QP}{n}$ or $T = \frac{36.77}{n}$
FLUID MOTOR TORQUE /100 psi (inch pounds)	TORQUE	= <u>f.m. displacement (cu. in./rev.)</u> .0628 (<u>cu. in./rev.)</u>	$T_{100psi} = \frac{d}{.0628}$
FLUID MOTOR SPEED (revolutions per minute)	SPEED	= <u>231 x flow rate (gpm)</u> f.m. displacement	n = <u>231Q</u> d
FLUID MOTOR POWER (horsepower output)	HORSEPOWER	= <u>torque output (inch pounds) x rpm</u> 63025	$HP = \frac{Tn}{63025}$
PUMP OUTLET FLOW (gallons per minute)	FLOW	= rpm_x pump displacement (cu. in./rev.) 231	$Q = \frac{nD}{231}$
PUMP INPUT POWER (horsepower required)	HORSEPOWER INPUT	= <u>flow rate output (gpm) x pressure (psi)</u> 1714 x efficiency (overall)	$HP_{IN} = \frac{QP}{1714Eff} or \frac{GPM x}{1714Eff}$
FLOW RATE through PIPING (additional required oil to reach pressure)	ADDITIONAL VOLUME	= pressure (<i>psi</i>) x volume of oil under pressure 250,000	$V_{A} = \frac{PV}{250,000} \qquad Approx. \frac{1}{29}$

GAS LAWS for ACCUMULATOR SIZING: Where "P" = psia (absolute) = psig (gauge pressure) + 14.7 psi

FORMULA	WORD FORMULA	LETTER FORMULA
PRESSURE or VOLUME (W/Constant "T") Temperature	Original Pressure x Original Volume = Final Pressure x Final Volume	P1V1 = P2V2 [isothermic]
PRESSURE or TEMPERATURE (W/Constant "V") Volume	Original Pressure x Final Temperature = Final Pressure x Original Temperature	P1T2 = P2V1 [isochoric]
VOLUME or TEMPERATURE (W/Constant "P") Pressure	Original Volume x Final Temperature = Final Volume x Original Temperature	V1T2 = V2T1 [isobaric]
	Original Temperature x Final Volume ⁿ = Final Pressure x Final Volume ⁿ	$P1V1^{n} = P2V2^{n}$
PRESSURE or VOLUME (W/Temperature change due to heat of compression	Final Temperature (Criginal Volume) ⁿ⁻¹ = (Final Pressure Original Pressure) ^{n-1/n}	$\frac{T2}{T1} = \left(\frac{V1}{V2}\right)^{n-1} = \left(\frac{P2}{V1}\right)^{n-1/n}$
For Nitrogen in the Exponent: "n" = 1.4	For full adiabatic conditions i.e., the "FULL HEATING" theoretical condition	
"n" = 1.3	For rapid cycling (most heating normally experienced)	
"n" = 1.1	For "NORMAL" cycling	
"n" = 1.0	Where gas time to return to normal temperature before discharge or recharge	

Series MH

Series H

Manipulators

Fluid Power Glossary

Α

ACCUMULATOR a container in which fluid is stored under pressure as a source of fluid power.

AIR, COMPRESSED air at any pressure greater than atmospheric pressure.

B

BLEEDER, AIR a device for the removal of air from an oil system.

BREATHER, AIR a device permitting air movement between the atmosphere and the component in which it is installed, while preventing contaminations from entering the component.

С

CAP, BLIND END a cylinder end closure which completely covers the bore area.

CAP, ROD END the cylinder and enclosure which covers the differential area between the bore area and the piston rod area.

CAVITATION a localized gaseous condition within a liquid stream which occurs where the pressure is reduced to the vapor pressure.

CLEVIS a "U" shaped mounting device which contains a common pin hole at right angle or normal to the axis of symmetry through each extension.

COMPRESSIBILITY the change in volume of a unit of volume of a fluid when subjected to a unit change of pressure.

CUSHION a device which provides controlled resistance to motion.

CUSHION, CYLINDER a cushion built into the cylinder to restrict flow at the outlet port, thereby arresting the motion of the piston rod.

CYCLE a single complete operation consisting of progressive phases, starting and ending at the neutral position.

CYLINDER a device which converts fluid power into linear mechanical force and motion.

CYLINDER, ADJUSTABLE STROKE a cylinder in which fluid force can be applied to the moveable element in either direction.

CYLINDER, NON-ROTATING a cylinder in which the relative rotation of the cylinder housing and the piston and piston rod, plunger or ram, is fixed.

CYLINDER, SINGLE ACTING a cylinder in which the fluid force can be applied to the moveable element in only one direction.

CYLINDER, TANDEM two or more cylinders with interconnected piston assemblies.

D

DUROMETER HARDNESS a measure of elastomer hardness by use of a durometer.

F

FILTER a device whose primary function is the retention by porous media of insoluble contaminants from a liquid. **FITTING** a connector or closure for fluid power lines and passages.

FLOW, LAMINAR a flow situation in which fluid moves in parallel laminar or layers.

Flow Rate – the volume, mass, or weight of a fluid passing through any conductor, per unit of time.

FLOW, TURBULENT a flow situation in which fluid particles move in a random manner.

FLUID FRICTION friction due to the viscosity of fluids.

FLUID STABILITY resistance of a fluid to permanent changes in properties.

G

GAGE an instrument or device for measuring, indicating, or comparing a physical characteristic, such as pressure or volume.

н

HYDRAULIC PUMP a device which converts mechanical force and motion into fluid power.

INTENSIFIER a device which converts low pressure fluid power into high pressure fluid power; also called a booster.

L

LUBRICATOR a device which adds controlled or metered amounts of lubricant into an air system.

Μ

MANIFOLD a conductor which provides multiple connection ports.

MUFFLER a device for reducing gas flow noise.

Ρ

PACKING a sealing device consisting of bulk deformable material or one or more mating deformable elements, reshaped by manually adjustable compression to obtain and maintain effectiveness. It usually uses axial compression to obtain radial sealing.

PORT an internal or external terminus of a passage in a component.

PORT BLEED a port which provides a passage for the purging of gas from a system or component.

PORT, CYLINDER a port which provides a passage to or from an actuator.

PORT, EXHAUST a port which provides a passage to the atmosphere.

PRESSURE force per unit area, usually expressed in pounds per square inch.

PRESSURE, BURST the pressure which creates loss of fluid thru the component envelope, resulting from failure.

PRESSURE, CRACKING the pressure at which a pressure operated valve begins to pass fluid.

PRESSURE, OPERATING the pressure at which a system is operated.

PRESSURE, PEAK the maximum pressure encountered in the operation of a component. **PRESSURE, RATED** the qualified operating pressure which is recommended for a component or a system by the manufacturer.

PRESSURE, SHOCK the pressure existing in a wave moving at sonic velocity.

PRESSURE, STATIC the pressure in a fluid at rest.

PRESSURE, SURGE the pressure existing from surge conditions.

PRESSURE, WORKING the pressure at which the working device normally operates.

PRESSURE VESSEL a container which holds fluid under pressure.

R

RESERVOIR a container for the storage of liquid in a fluid power system.

RESTRICTOR a device which reduces the cross-sectional flow area.

REYN the standard unit of absolute viscosity in the English system. It is expressed in pound-seconds per square inch.

S

SERVOVALVE a valve which modulates output as a function of an input command. Silencer – a device for reducing gas flow noise. Noise is decreased by tuned resonant control of gas expansion.

SUBPLATE an auxiliary ported plate for mounting components.

SURGE a transient rise of pressure or flow.

Т

TUBE a line whose size is its outside diameter. Tube is available in varied wall thicknesses.

V

VALVE a device which controls fluid flow direction, pressure, or flow rate.

VALVE, DIRECTIONAL CONTROL a valve whose primary function is to direct or prevent flow through selected passages.

VALVE, FLOW CONTROL a valve whose primary function is to control flow rate.

VALVE, SEQUENCE a valve whose primary function is to direct flow in a predetermined sequence.

VALVE POSITION, DETENT a predetermined position maintained by a holding device, acting on the flow-directing elements of a directional control valve.

VALVE POSITION, NORMAL the valve position when signal or actuating force is not being applied.

VISCOSITY a measure of internal friction or the resistance of a fluid to flow.

Terms and definitions are extracted from ANSI Glossary of Terms for Fluid Power with permission

of the publisher, National Fluid Power Association, Milwaukee, Wisconsin 53222.

milwaukee Glinder

Website Highlights

- "MilCad" software
- Product specifications
- Product literature
- Online quote request
- Distributor locator
- Design Engineering Guide to assist with product application selection

www.milwaukeecylinder.com

- 2D and 3D cylinder configurator
 - Hydraulic and pneumatic
 - NFPA and ISO
 - Accessories
 - Download your selections
 - Over forty 3D formats
 - Twenty-five 2D formats
 - One-time registration required

Series H

Manipulators

WARRANTY

Seller warrants the goods sold hereunder to be free from defects in material and workmanship for a period of twelve months after the date of shipment from Seller's plant. If the goods are in accordance with or in reference to an engineering drawing specified by or furnished to the customer, the specifications and information on the drawing shall be applicable in determining such correct use, operation and application.

When claiming a breach of the above warranty, Buyer must notify Seller promptly in writing, whereupon Seller will either examine the goods at their site or issue shipping instructions for return to Seller.

When any goods sold hereunder are proved not as warranted, Seller's sole obligation under this warranty shall be to repair or replace the goods, not including installation or any other charges, at its option, without charge to Buyer.

THIS WARRANTY COMPRISES SELLER'S SOLE AND ENTIRE WARRANTY OBLIGATION AND LIABILITY TO BUYER, ITS CUSTOMERS AND ASSIGNS IN CONNECTION WITH GOODS SOLD HEREUNDER. ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND FITNESS, ARE EXPRESSLY EXCLUDED.

CONSEQUENTIAL DAMAGES: In no event shall Seller be liable for consequential or special damages arising out of a delay in or failure of delivery, defects in material or workmanship, or arising out of a breach by Seller of any other term or obligation of Seller under this contract.

> While every care has been taken in the preparation of this © Copyright 2012, Actuant Corp. All rights reserved. catalog and all data contained within is deemed accurate at the time of printing, Milwaukee Cylinder does reserve the illustrations, drawings, photos) without express written right to make changes to the specifications of any product, consent is prohibited. or discontinue any product, contained within this catalog without prior notice.

All information in this catalog can be changed due to product improvements without prior notice.

milwaukee Ylinder

Series H	Notes
>	
Series MH	
Series LH	
Series A	
Series MN	
Hyd-Pneu Devices	
Cyl Accessories	
Manipulators	
Power Units/Valves	
Design Guide	

Notes

Dimensional Data Clevis/Brackets/Pins/Rod Eyes

ROD C	LEVIS		Max. Load	Thread										RC	DD EYE
	Part #	Code	(tension) (lbs)	Size KK	A	CA	СВ	CD	CE	CR	CW	ER	Part #	Code	
	15-72-1001	C101	4,380	7⁄16-20	3⁄4	11⁄2	3⁄4	1⁄2	11⁄2	1⁄2	1⁄2	9⁄16	15-73-1001	C301	
	15-72-1002	C102	12,372	3⁄4-16	11⁄8	21⁄16	11⁄4	3⁄4	23⁄8	3⁄4	5⁄8	15⁄16	15-73-1002	C302	CD CD KK THREAD
R CW CR	15-72-1003	C103	20,433	1-14	15⁄8	2 ¹³ ⁄16	11⁄2	1	31⁄8	1	3⁄4	11⁄8	15-73-1003	C303	$ \langle X_{-}X' \rangle = $
CW CD	15-72-1004	C104	30,483	11⁄4-12	2	37⁄16	2	13⁄8	41⁄8	13⁄8	1	1%16	15-73-1004	C304	CA CA
O P CE	15-72-1005	C105	49,479	11⁄2-12	21⁄4	4	21⁄2	13⁄4	41⁄2	13⁄4	11⁄4	2	15-73-1005	C305	CB
ICD A	15-72-1006	C106	70,095	17⁄8-12	3	5	21⁄2	2	51⁄2	2	11⁄4	21⁄2	15-73-1006	C306	FULL CR
	15-72-1007	C107	94,248	21⁄4-12	31⁄2	5 ¹³ ⁄16	3	21⁄2	61⁄2	21⁄2	11⁄2	2 ¹³ ⁄16	15-73-1007	C307	(There
KKTHREA	15-72-1008	C108	121,932	21⁄2-12	31⁄2	61⁄8	3	3	6¾	23⁄4	11⁄2	31⁄4	15-73-1008	C308	
	15-72-1009	C109	187,908	31⁄4-12	41⁄2	75⁄8	4	31⁄2	81⁄2	31⁄2	2	37⁄8	15-73-1009	C309	
	15-72-1010	C110	268,026	4-12	51⁄2	91⁄8	41⁄2	4	10	4	21⁄4	47⁄16	15-73-1010	C310	

NOTE: The Rod Clevis and Rod Eyes are designed for use with the standard Milwaukee Cylinder Style No. 2 Rod End.

When ordering these accessories, be sure to match the thread size of the Style No. 2 Rod End of the rod size you ordered to the thread size of the accessory you require.

	PIVOT				
Part #	Code	CD	CL	Р	
15-76-1001	P101	1⁄2	1.94	7⁄64	P
15-76-1002	P102	3⁄4	2.72	9⁄64	CL
15-76-1003	P103	1	3.22	9⁄64	P
15-76-1004	P104	13⁄8	4.25	11/64	0.0
15-76-1005	P105	13⁄4	5.25	11/64	
15-76-1006	P106	2	5.28	13⁄64	
15-76-1007	P107	21⁄2	6.19	Groov	e width .086 to .091
15-76-1008	P108	3	6.25	Groov	e width .103 to .108
15-76-1009	P109	31⁄2	8.13	Groov	e width .120 to .125
15-76-1010	P110	4	9.13	Groov	e width .120 to .125

1)	Pivot pins are fu	rnished with	clevis mo	unted cylir	nders as s	standard.	
2)	Pivot nins for 1	1/2"- 6" hore	are furni	shed with	cotter ni	ns	

Pivot pins for 7" thru 12" bore are furnished with snap rings.3) Pivot pins are not furnished as standard and must be ordered

separately for use with accessories.

	SPHERICAL ROD EYE (WITH NUT)											
Part #	Max. Load (tension)	a1	CD	EW	H,	НН	LL	NN	S			
	(lbs)		00		п ₁	пп		ININ	3			
HS-301	1,665	12°	1⁄2	5⁄8	11/16	7⁄16-20	27⁄16	115/32	1⁄4			
HS-302	7,020	13½°	3⁄4	7⁄8	²⁹ /32	3⁄4-16	2 ²⁷ /32	1 ²³ ⁄32	7⁄16			
HS-303	19,050	14°	1	13⁄8	113/32	1-14	43⁄32	23/32	9⁄16			
S-301	1,450	12°	1⁄2	5⁄8	11/16	7⁄16-20	27⁄16	115/32	1⁄4			
S-302	2,880	13½°	3⁄4	7⁄8	²⁹ /32	3⁄4-16	2 ²⁷ /32	1 ²³ ⁄32	7⁄16			
S-303	10,885	14°	1	13⁄8	113/32	1-14	43⁄32	2 ³ ⁄32	9⁄16			

NOTE: The Spherical Rod Eye is used with Style 3 and 5 rod ends.

CLEVIS BRACKET		Max.	Max.					Thrd.			Clevis	Evo	Clovie	Evo				EYE	BRACKET
	Part #	Load (tension)	Press.					Size			CIEVIS	Гле	CIEVIS	∟ус				Part #	
	Code	(lbs)*	(psi)*	AA	СВ	CD	CW	DD	DE	Е	F	-	F	L	LR	LW	MR	Code	
all.	15-74-2001 B101	7,510	3,000	2.3	3⁄4	1⁄2	1⁄2	³ ⁄8- 24	¹³ ⁄32	21⁄2	3⁄8	3⁄8	11⁄8	11⁄8	¹³ ⁄16	¹¹ ⁄16	1⁄2	15-75-2001 B401	
MR Qigo FL	15-74-2002 B122	20,082	3,000	2.9	11⁄4	3⁄4	5⁄8	1∕₂- 20	17/32	3	5⁄8	5⁄8	17⁄8	17⁄8	1³⁄16	11⁄4	3⁄4	15-75-2002 B422	E DIO DE
A RA DA F	15-74-2003 B102	20,082	3,000	3.6	11⁄4	3⁄4	5⁄8	1∕₂- 20	17/32	31⁄2	5⁄8	5⁄8	17⁄8	17⁄8	15⁄16	13⁄16	3⁄4	15-75-2003 B402	FL LWO
	15-74-2004 B103	27,684	3,000	4.6	11⁄2	1	3⁄4	⁵⁄8- 18	21/ ₃₂	41⁄2	3⁄4	3⁄4	21⁄4	21⁄4	13⁄8	13⁄8	1	15-75-2004 B403	¥
AA	15-74-2005 B104	20,685	3,000	5.4	2	13⁄8	1	⁵⁄≋- 18	21/ ₃₂	5	7⁄8	7⁄8	3	3	17⁄8	17⁄8	13⁄8	15-75-2005 B404	AA
	15-74-2006 B105	55,000	3,000	7.0	21⁄2	13⁄4	11⁄4	7∕8- 14	29/32	61⁄2	7⁄8	11⁄8	31⁄8	33⁄8	2	21⁄32	15⁄8	15-75-2006A B405A	
	15-74-2007 B106	80,000	3,000	8.1	21⁄2	2	11⁄4	1-14	11⁄32	71⁄2	1	11⁄2	31⁄2	4	21⁄16	21⁄16	2	15-75-2007A B406A	
E	15-74-2008 B107	115,000	3,000	9.3	3	21⁄2	11⁄2	11⁄8- 12	15⁄32	81⁄2	1	1 3⁄4	4	43⁄4	25⁄8	2 ^{21/} 32	23⁄8	15-75-2008A B407A	I*EI
	15-74-2009 B108	125,000	3,000	10.6	3	3	11⁄2	11⁄4- 12	1%32	91⁄2	1	2	41⁄4	51⁄4	27⁄8	27⁄8	23⁄4	15-75-2009A B408A	

Specials are Our Standard

We build confidence in every industry.

PRESS CYLINDER APPLICATIONS

From garbage compactors to cotton bailers – whatever the application, major press manufacturers rely on *Milwaukee Cylinder's* extensive experience.

FOUNDRIES AND STEEL MILLS

Casting, rolling, or pickling... whatever the demanding application – *Milwaukee Cylinder* products are on the job.

AUTOMOTIVE APPLICATIONS

Stamping, welding, clamping, or hydroforming, *Milwaukee Cylinder* keeps the production lines running.

OIL AND GAS INDUSTRY

From 10,000 feet beneath the gulf, to the harshest environments of the tar sands, *Milwaukee Cylinder* products are used in the most demanding projects.

PLASTIC MOLDING AND RUBBER INDUSTRY

From garden furniture, to where the rubber hits the road, *Milwaukee Cylinder* is part of the process.

MOTION CONTROL APPLICATIONS

For the most sophisticated, yet rugged needs in motion control, you can rely on *Milwaukee Cylinder.*

MC105R2

Series H	4-35	Series H Heavy Duty Hydraulic Cylinders
Series MH	36-49	Series MH ISO Metric Hydraulic Cylinders
Series LH	50-71	Series LH Low Pressure Hydraulic Cylinders
Series A	72-101	Series A Pneumatic Cylinders
Series MN	102-134	Series MN Aluminum Cylinders
Hyd-Pneu Devices	135-147	Hydraulic Pneumatic Devices
Cyl Accessories	148-153	Cylinder Accessories
Manipulators	154-159	Industrial Manipulators
Power Units/Valves	160-176	Power Units and Valves
Design Guide	177-193	Design Engineering Guide
		nt

milwaukee Ylinder

5877 S. Pennsylvania Avenue Cudahy, Wisconsin 53110-2456 USA

ISO 9001 REGISTERED

Your Milwaukee Cylinder Distributor

www.milwaukeecylinder.com • sales@milwaukeecylinder.com phone 414.769.9700 • fax 414.769.0157